
Ungraded Lab - Trees Ensemble
In this notebook, you will:

• Use Pandas to perform one-hot encoding of a dataset
• Use scikit-learn to implement a Decision Tree, Random Forest and XGBoost models

Let's import the libraries we will use.

1. Introduction
Datatset

• This dataset is obtained from Kaggle: Heart Failure Prediction Dataset

Context

• Cardiovascular disease (CVDs) is the number one cause of death globally, taking an
estimated 17.9 million lives each year, which accounts for 31% of all deaths worldwide.
Four out of five CVD deaths are due to heart attacks and strokes, and one-third of these
deaths occur prematurely in people under 70 years of age. Heart failure is a common
event caused by CVDs.

• People with cardiovascular disease or who are at high cardiovascular risk (due to the
presence of one or more risk factors such as hypertension, diabetes, hyperlipidaemia or
already established disease) need early detection and management.

• This dataset contains 11 features that can be used to predict possible heart disease.
• Let's train a machine learning model to assist with diagnosing this disease.

Attribute Information

• Age: age of the patient [years]
• Sex: sex of the patient [M: Male, F: Female]
• ChestPainType: chest pain type [TA: Typical Angina, ATA: Atypical Angina, NAP: Non-

Anginal Pain, ASY: Asymptomatic]
• RestingBP: resting blood pressure [mm Hg]
• Cholesterol: serum cholesterol [mm/dl]

In [18]:
import numpy as np

import pandas as pd

#import xgboost as xb

from sklearn.tree import DecisionTreeClassifier

from sklearn.ensemble import RandomForestClassifier

from sklearn.model_selection import train_test_split

from sklearn.metrics import accuracy_score

from xgboost import XGBClassifier

import matplotlib.pyplot as plt

plt.style.use('./deeplearning.mplstyle')

RANDOM_STATE = 55 ## We will pass it to every sklearn call so we ensure reproducibility

https://www.kaggle.com/datasets/fedesoriano/heart-failure-prediction
https://www.kaggle.com/datasets/fedesoriano/heart-failure-prediction


• FastingBS: fasting blood sugar [1: if FastingBS > 120 mg/dl, 0: otherwise]
• RestingECG: resting electrocardiogram results [Normal: Normal, ST: having ST-T wave

abnormality (T wave inversions and/or ST elevation or depression of > 0.05 mV), LVH:
showing probable or definite left ventricular hypertrophy by Estes' criteria]

• MaxHR: maximum heart rate achieved [Numeric value between 60 and 202]
• ExerciseAngina: exercise-induced angina [Y: Yes, N: No]
• Oldpeak: oldpeak = ST [Numeric value measured in depression]
• ST_Slope: the slope of the peak exercise ST segment [Up: upsloping, Flat: flat, Down:

downsloping]
• HeartDisease: output class [1: heart disease, 0: Normal]

Let's now load the dataset. As we can see above, the variables:

• Sex
• ChestPainType
• RestingECG
• ExerciseAngina
• ST_Slope

Are categorical, so we must one-hot encode them.

Age Sex ChestPainType RestingBP Cholesterol FastingBS RestingECG MaxHR ExerciseAngina

0 40 M ATA 140 289 0 Normal 172

1 49 F NAP 160 180 0 Normal 156

2 37 M ATA 130 283 0 ST 98

3 48 F ASY 138 214 0 Normal 108

4 54 M NAP 150 195 0 Normal 122

We must perform some data engineering before working with the models. There are 5
categorical features, so we will use Pandas to one-hot encode them.

2. One-hot encoding using Pandas
First we will remove the binary variables, because one-hot encoding them would do nothing
to them. To achieve this we will just count how many different values there are in each
categorical variable and consider only the variables with 3 or more values.

In [19]:
# Load the dataset using pandas

df = pd.read_csv("heart.csv")

In [20]:
df.head()

Out[20]:



As a reminder, one-hot encoding aims to transform a categorical variable with n  outputs
into n  binary variables.

Pandas has a built-in method to one-hot encode variables, it is the function
pd.get_dummies . There are several arguments to this function, but here we will use only a

few. They are:

• data: DataFrame to be used
• prefix: A list with prefixes, so we know which value we are dealing with
• columns: the list of columns that will be one-hot encoded. 'prefix' and 'columns' must

have the same length.

For more information, you can always type help(pd.get_dummies)  to read the function's
full documentation.

Age RestingBP Cholesterol FastingBS MaxHR Oldpeak HeartDisease Sex_F Sex_M ChestPainType_ASY

0 40 140 289 0 172 0.0 0 0 1

1 49 160 180 0 156 1.0 1 1 0

2 37 130 283 0 98 0.0 0 0 1

3 48 138 214 0 108 1.5 1 1 0

4 54 150 195 0 122 0.0 0 0 1

5 rows × 21 columns

Let's choose the variables that will be the input features of the model.

• The target is HeartDisease .
• All other variables are features that can potentially be used to predict the target,

HeartDisease .

We started with 11 features. Let's see how many feature variables we have after one-hot
encoding.

In [21]:
cat_variables = ['Sex',

'ChestPainType',

'RestingECG',

'ExerciseAngina',

'ST_Slope'

]

In [22]:
# This will replace the columns with the one-hot encoded ones and keep the columns outside 'columns'

df = pd.get_dummies(data = df,

prefix = cat_variables,

columns = cat_variables)

In [6]:
df.head()

Out[6]:

In [23]:
features = [x for x in df.columns if x not in 'HeartDisease'] ## Removing our target variable
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3. Splitting the Dataset
In this section, we will split our dataset into train and test datasets. We will use the function
train_test_split  from Scikit-learn. Let's just check its arguments.

Help on function train_test_split in module sklearn.model_selection._split:

train_test_split(*arrays, test_size=None, train_size=None, random_state=None, shuf

fle=True, stratify=None)

    Split arrays or matrices into random train and test subsets

    

    Quick utility that wraps input validation and

    ``next(ShuffleSplit().split(X, y))`` and application to input data

    into a single call for splitting (and optionally subsampling) data in a

    oneliner.

    

    Read more in the :ref:`User Guide <cross_validation>`.

    

    Parameters

    ----------

    *arrays : sequence of indexables with same length / shape[0]

        Allowed inputs are lists, numpy arrays, scipy-sparse

        matrices or pandas dataframes.

    

    test_size : float or int, default=None

        If float, should be between 0.0 and 1.0 and represent the proportion

        of the dataset to include in the test split. If int, represents the

        absolute number of test samples. If None, the value is set to the

        complement of the train size. If ``train_size`` is also None, it will

        be set to 0.25.

    

    train_size : float or int, default=None

        If float, should be between 0.0 and 1.0 and represent the

        proportion of the dataset to include in the train split. If

        int, represents the absolute number of train samples. If None,

        the value is automatically set to the complement of the test size.

    

    random_state : int, RandomState instance or None, default=None

        Controls the shuffling applied to the data before applying the split.

        Pass an int for reproducible output across multiple function calls.

        See :term:`Glossary <random_state>`.

    

    

    shuffle : bool, default=True

        Whether or not to shuffle the data before splitting. If shuffle=False

        then stratify must be None.

    

    stratify : array-like, default=None

        If not None, data is split in a stratified fashion, using this as

        the class labels.

        Read more in the :ref:`User Guide <stratification>`.

    

In [24]:
print(len(features))

In [25]:
help(train_test_split)



    Returns

    -------

    splitting : list, length=2 * len(arrays)

        List containing train-test split of inputs.

    

        .. versionadded:: 0.16

            If the input is sparse, the output will be a

            ``scipy.sparse.csr_matrix``. Else, output type is the same as the

            input type.

    

    Examples

    --------

    >>> import numpy as np

    >>> from sklearn.model_selection import train_test_split

    >>> X, y = np.arange(10).reshape((5, 2)), range(5)

    >>> X

    array([[0, 1],

           [2, 3],

           [4, 5],

           [6, 7],

           [8, 9]])

    >>> list(y)

    [0, 1, 2, 3, 4]

    

    >>> X_train, X_test, y_train, y_test = train_test_split(

    ...     X, y, test_size=0.33, random_state=42)

    ...

    >>> X_train

    array([[4, 5],

           [0, 1],

           [6, 7]])

    >>> y_train

    [2, 0, 3]

    >>> X_test

    array([[2, 3],

           [8, 9]])

    >>> y_test

    [1, 4]

    

    >>> train_test_split(y, shuffle=False)

    [[0, 1, 2], [3, 4]]

train samples: 734

validation samples: 184

target proportion: 0.5518

4. Building the Models

4.1 Decision Tree

In [26]:
X_train, X_val, y_train, y_val = train_test_split(df[features], df['HeartDisease'],

# We will keep the shuffle = True since our dataset has not any time dependency.

In [27]:
print(f'train samples: {len(X_train)}')

print(f'validation samples: {len(X_val)}')

print(f'target proportion: {sum(y_train)/len(y_train):.4f}')



In this section, let's work with the Decision Tree we previously learned, but now using the
Scikit-learn implementation.

There are several hyperparameters in the Decision Tree object from Scikit-learn. We will use
only some of them and also we will not perform feature selection nor hyperparameter tuning
in this lab (but you are encouraged to do so and compare the results ����� )

The hyperparameters we will use and investigate here are:

• min_samples_split: The minimum number of samples required to split an internal node.
▪ Choosing a higher min_samples_split can reduce the number of splits and may help

to reduce overfitting.
• max_depth: The maximum depth of the tree.

▪ Choosing a lower max_depth can reduce the number of splits and may help to
reduce overfitting.

<matplotlib.legend.Legend at 0x22bbe0722e0>

In [28]:
min_samples_split_list = [2,10, 30, 50, 100, 200, 300, 700] ## If the number is an integer, then it 

max_depth_list = [1,2, 3, 4, 8, 16, 32, 64, None] # None means that there is no depth limit.

In [29]:
accuracy_list_train = []

accuracy_list_val = []

for min_samples_split in min_samples_split_list:

# You can fit the model at the same time you define it, because the fit function returns the fit

model = DecisionTreeClassifier(min_samples_split = min_samples_split,

random_state = RANDOM_STATE).fit(X_train,y_train

predictions_train = model.predict(X_train) ## The predicted values for the train dataset

predictions_val = model.predict(X_val) ## The predicted values for the test dataset

accuracy_train = accuracy_score(predictions_train,y_train)

accuracy_val = accuracy_score(predictions_val,y_val)

accuracy_list_train.append(accuracy_train)

accuracy_list_val.append(accuracy_val)

plt.title('Train x Validation metrics')

plt.xlabel('min_samples_split')

plt.ylabel('accuracy')

plt.xticks(ticks = range(len(min_samples_split_list )),labels=min_samples_split_list

plt.plot(accuracy_list_train)

plt.plot(accuracy_list_val)

plt.legend(['Train','Validation'])

Out[29]:

https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html


Note how increasing the the number of min_samples_split  reduces overfitting.

• Increasing min_samples_split  from 10 to 30, and from 30 to 50, even though it does
not improve the validation accuracy, it brings the training accuracy closer to it, showing a
reduction in overfitting.

Let's do the same experiment with max_depth .

<matplotlib.legend.Legend at 0x22bbe15f460>

We can see that in general, reducing max_depth  can help to reduce overfitting.

• Reducing max_depth  from 8 to 4 increases validation accuracy closer to training
accuracy, while significantly reducing training accuracy.

• The validation accuracy reaches the highest at tree_depth=4.
• When the max_depth  is smaller than 3, both training and validation accuracy decreases.

The tree cannot make enough splits to distinguish positives from negatives (the model is
underfitting the training set).

In [30]:
accuracy_list_train = []

accuracy_list_val = []

for max_depth in max_depth_list:

# You can fit the model at the same time you define it, because the fit function returns the fit

model = DecisionTreeClassifier(max_depth = max_depth,

random_state = RANDOM_STATE).fit(X_train,y_train

predictions_train = model.predict(X_train) ## The predicted values for the train dataset

predictions_val = model.predict(X_val) ## The predicted values for the test dataset

accuracy_train = accuracy_score(predictions_train,y_train)

accuracy_val = accuracy_score(predictions_val,y_val)

accuracy_list_train.append(accuracy_train)

accuracy_list_val.append(accuracy_val)

plt.title('Train x Validation metrics')

plt.xlabel('max_depth')

plt.ylabel('accuracy')

plt.xticks(ticks = range(len(max_depth_list )),labels=max_depth_list)

plt.plot(accuracy_list_train)

plt.plot(accuracy_list_val)

plt.legend(['Train','Validation'])

Out[30]:



• When the max_depth  is too high ( >= 5), validation accuracy decreases while training
accuracy increases, indicating that the model is overfitting to the training set.

So we can choose the best values for these two hyper-parameters for our model to be:

• max_depth = 4

• min_samples_split = 50

Metrics train:

Accuracy score: 0.8583

Metrics validation:

Accuracy score: 0.8641

No sign of overfitting, even though the metrics are not that good.

4.2 Random Forest
Now let's try the Random Forest algorithm also, using the Scikit-learn implementation.

• All of the hyperparameters found in the decision tree model will also exist in this
algorithm, since a random forest is an ensemble of many Decision Trees.

• One additional hyperparameter for Random Forest is called n_estimators  which is the
number of Decision Trees that make up the Random Forest.

Remember that for a Random Forest, we randomly choose a subset of the features AND
randomly choose a subset of the training examples to train each individual tree.

• Following the lectures, if  is the number of features, we will randomly select  of

these features to train each individual tree.
• Note that you can modify this by setting the max_features  parameter.

You can also speed up your training jobs with another parameter, n_jobs .

• Since the fitting of each tree is independent of each other, it is possible fit more than one
tree in parallel.

• So setting n_jobs  higher will increase how many CPU cores it will use. Note that the
numbers very close to the maximum cores of your CPU may impact on the overall
performance of your PC and even lead to freezes.

• Changing this parameter does not impact on the final result but can reduce the training
time.

We will run the same script again, but with another parameter, n_estimators , where we
will choose between 10, 50, and 100. The default is 100.

In [31]:
decision_tree_model = DecisionTreeClassifier(min_samples_split = 50,

max_depth = 3,

random_state = RANDOM_STATE).fit(X_train

In [32]:
print(f"Metrics train:\n\tAccuracy score: {accuracy_score(decision_tree_model.predict

print(f"Metrics validation:\n\tAccuracy score: {accuracy_score(decision_tree_model

n √n



<matplotlib.legend.Legend at 0x22bbe21f100>

Notice that, even though the validation accuraty reaches is the same both at
min_samples_split = 2  and min_samples_split = 10 , in the latter the difference in

training and validation set reduces, showing less overfitting.

In [33]:
min_samples_split_list = [2,10, 30, 50, 100, 200, 300, 700] ## If the number is an integer, then it

## If it is a float, then it is the percentage of the d

max_depth_list = [2, 4, 8, 16, 32, 64, None]

n_estimators_list = [10,50,100,500]

In [34]:
accuracy_list_train = []

accuracy_list_val = []

for min_samples_split in min_samples_split_list:

# You can fit the model at the same time you define it, because the fit function returns the fit

model = RandomForestClassifier(min_samples_split = min_samples_split,

random_state = RANDOM_STATE).fit(X_train,y_train

predictions_train = model.predict(X_train) ## The predicted values for the train dataset

predictions_val = model.predict(X_val) ## The predicted values for the test dataset

accuracy_train = accuracy_score(predictions_train,y_train)

accuracy_val = accuracy_score(predictions_val,y_val)

accuracy_list_train.append(accuracy_train)

accuracy_list_val.append(accuracy_val)

plt.title('Train x Validation metrics')

plt.xlabel('min_samples_split')

plt.ylabel('accuracy')

plt.xticks(ticks = range(len(min_samples_split_list )),labels=min_samples_split_list

plt.plot(accuracy_list_train)

plt.plot(accuracy_list_val)

plt.legend(['Train','Validation'])

Out[34]:



<matplotlib.legend.Legend at 0x22bbe271070>

In [35]:
accuracy_list_train = []

accuracy_list_val = []

for max_depth in max_depth_list:

# You can fit the model at the same time you define it, because the fit function returns the fit

model = RandomForestClassifier(max_depth = max_depth,

random_state = RANDOM_STATE).fit(X_train,y_train

predictions_train = model.predict(X_train) ## The predicted values for the train dataset

predictions_val = model.predict(X_val) ## The predicted values for the test dataset

accuracy_train = accuracy_score(predictions_train,y_train)

accuracy_val = accuracy_score(predictions_val,y_val)

accuracy_list_train.append(accuracy_train)

accuracy_list_val.append(accuracy_val)

plt.title('Train x Validation metrics')

plt.xlabel('max_depth')

plt.ylabel('accuracy')

plt.xticks(ticks = range(len(max_depth_list )),labels=max_depth_list)

plt.plot(accuracy_list_train)

plt.plot(accuracy_list_val)

plt.legend(['Train','Validation'])

Out[35]:



<matplotlib.legend.Legend at 0x22bbe2f8dc0>

Let's then fit a random forest with the following parameters:

• max_depth: 16
• min_samples_split: 10
• n_estimators: 100

Metrics train:

Accuracy score: 0.9305

Metrics test:

Accuracy score: 0.8913

Note that we are searching for the best value one hyperparameter while leaving the other

In [36]:
accuracy_list_train = []

accuracy_list_val = []

for n_estimators in n_estimators_list:

# You can fit the model at the same time you define it, because the fit function returns the fit

model = RandomForestClassifier(n_estimators = n_estimators,

random_state = RANDOM_STATE).fit(X_train,y_train

predictions_train = model.predict(X_train) ## The predicted values for the train dataset

predictions_val = model.predict(X_val) ## The predicted values for the test dataset

accuracy_train = accuracy_score(predictions_train,y_train)

accuracy_val = accuracy_score(predictions_val,y_val)

accuracy_list_train.append(accuracy_train)

accuracy_list_val.append(accuracy_val)

plt.title('Train x Validation metrics')

plt.xlabel('n_estimators')

plt.ylabel('accuracy')

plt.xticks(ticks = range(len(n_estimators_list )),labels=n_estimators_list)

plt.plot(accuracy_list_train)

plt.plot(accuracy_list_val)

plt.legend(['Train','Validation'])

Out[36]:

In [37]:
random_forest_model = RandomForestClassifier(n_estimators = 100,

max_depth = 16, 

min_samples_split = 10).fit(X_train,y_train

In [38]:
print(f"Metrics train:\n\tAccuracy score: {accuracy_score(random_forest_model.predict



hyperparameters at their default values.

• Ideally, we would want to check every combination of values for every hyperparameter
that we are tuning.

• If we have 3 hyperparameters, and each hyperparameter has 4 values to try out, we
should have a total of 4 x 4 x 4 = 64 combinations to try.

• When we only modify one hyperparameter while leaving the rest as their default value,
we are trying 4 + 4 + 4 = 12 results.

• To try out all combinations, we can use a sklearn implementation called GridSearchCV.
GridSearchCV has a refit parameter that will automatically refit a model on the best
combination so we will not need to program it explicitly. For more on GridSearchCV,
please refer to its documentation.

4.3 XGBoost
Next is the Gradient Boosting model, called XGBoost. The boosting methods train several
trees, but instead of them being uncorrelated to each other, now the trees are fit one after
the other in order to minimize the error.

The model has the same parameters as a decision tree, plus the learning rate.

• The learning rate is the size of the step on the Gradient Descent method that the
XGBoost uses internally to minimize the error on each train step.

One interesting thing about the XGBoost is that during fitting, it can take in an evaluation
dataset of the form (X_val,y_val) .

• On each iteration, it measures the cost (or evaluation metric) on the evaluation datasets.
• Once the cost (or metric) stops decreasing for a number of rounds (called

early_stopping_rounds), the training will stop.
• More iterations lead to more estimators, and more estimators can result in overfitting.
• By stopping once the validation metric no longer improves, we can limit the number of

estimators created, and reduce overfitting.

First, let's define a subset of our training set (we should not use the test set here).

We can then set a large number of estimators, because we can stop if the cost function stops
decreasing.

Note some of the .fit()  parameters:

• eval_set = [(X_train_eval,y_train_eval)] :Here we must pass a list to the
eval_set, because you can have several different tuples ov eval sets.

• early_stopping_rounds : This parameter helps to stop the model training if its
evaluation metric is no longer improving on the validation set. It's set to 10.

In [39]:
n = int(len(X_train)*0.8) ## Let's use 80% to train and 20% to eval

In [40]:
X_train_fit, X_train_eval, y_train_fit, y_train_eval = X_train[:n], X_train[n:], y_train

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html


▪ The model keeps track of the round with the best performance (lowest evaluation
metric). For example, let's say round 16 has the lowest evaluation metric so far.

▪ Each successive round's evaluation metric is compared to the best metric. If the
model goes 10 rounds where none have a better metric than the best one, then the
model stops training.

▪ The model is returned at its last state when training terminated, not its state during
the best round. For example, if the model stops at round 26, but the best round was
16, the model's training state at round 26 is returned, not round 16.

▪ Note that this is different from returning the model's "best" state (from when the
evaluation metric was the lowest).

[0] validation_0-logloss:0.64479

[1] validation_0-logloss:0.60569

[2] validation_0-logloss:0.57481

[3] validation_0-logloss:0.54947

[4] validation_0-logloss:0.52973

[5] validation_0-logloss:0.51331

[6] validation_0-logloss:0.49823

[7] validation_0-logloss:0.48855

[8] validation_0-logloss:0.47888

[9] validation_0-logloss:0.47068

[10] validation_0-logloss:0.46507

[11] validation_0-logloss:0.45832

[12] validation_0-logloss:0.45557

[13] validation_0-logloss:0.45030

[14] validation_0-logloss:0.44653

[15] validation_0-logloss:0.44213

[16] validation_0-logloss:0.43948

[17] validation_0-logloss:0.44088

[18] validation_0-logloss:0.44358

[19] validation_0-logloss:0.44493

[20] validation_0-logloss:0.44294

[21] validation_0-logloss:0.44486

[22] validation_0-logloss:0.44586

[23] validation_0-logloss:0.44680

[24] validation_0-logloss:0.44925

[25] validation_0-logloss:0.45383

[26] validation_0-logloss:0.45547

C:\Users\thoma\anaconda39\lib\site-packages\xgboost\sklearn.py:835: UserWarning: `

early_stopping_rounds` in `fit` method is deprecated for better compatibility with 

scikit-learn, use `early_stopping_rounds` in constructor or`set_params` instead.

  warnings.warn(

XGBClassifier(base_score=None, booster=None, callbacks=None,

              colsample_bylevel=None, colsample_bynode=None,

              colsample_bytree=None, early_stopping_rounds=None,

              enable_categorical=False, eval_metric=None, feature_types=None,

              gamma=None, gpu_id=None, grow_policy=None, importance_type=None,

              interaction_constraints=None, learning_rate=0.1, max_bin=None,

              max_cat_threshold=None, max_cat_to_onehot=None,

              max_delta_step=None, max_depth=None, max_leaves=None,

              min_child_weight=None, missing=nan, monotone_constraints=None,

              n_estimators=500, n_jobs=None, num_parallel_tree=None,

              predictor=None, random_state=55, ...)

Even though we initialized the model to allow up to 500 estimators, the algorithm only fit 26

In [41]:
xgb_model = XGBClassifier(n_estimators = 500, learning_rate = 0.1,verbosity = 1, random_state

xgb_model.fit(X_train_fit,y_train_fit, eval_set = [(X_train_eval,y_train_eval)], early_stopping_roun

Out[41]:



estimators (over 26 rounds of training).

To see why, let's look for the round of training that had the best performance (lowest
evaluation metric). You can either view the validation log loss metrics that were output above,
or view the model's .best_iteration  attribute:

16

The best round of training was round 16, with a log loss of 4.3948.

• For 10 rounds of training after that (from round 17 to 26), the log loss was higher than
this.

• Since we set early_stopping_rounds  to 10, then by the 10th round where the log
loss doesn't improve upon the best one, training stops.

• You can try out different values of early_stopping_rounds  to verify this. If you set it
to 20, for instance, the model stops training at round 36 (16 + 20).

Metrics train:

Accuracy score: 0.9251

Metrics test:

Accuracy score: 0.8641

In this example, both Random Forest and XGBoost had similar performance (test accuracy).

Congratulations, you have learned how to use Decision Tree, Random Forest from the scikit-
learn library and XGBoost!

In [42]:
xgb_model.best_iteration

Out[42]:

In [43]:
print(f"Metrics train:\n\tAccuracy score: {accuracy_score(xgb_model.predict(X_train


