
Ungraded Lab: Decision Trees
In this notebook you will visualize how a decision tree is splitted using information gain.

We will revisit the dataset used in the video lectures. The dataset is:

As you saw in the lectures, in a decision tree, we decide if a node will be split or not by
looking at the information gain that split would give us. (Image of video IG)

Where

and is the entropy, defined as

Remember that log here is defined to be in base 2. Run the code block below to see by
yourself how the entropy. behaves while varies.

Note that the H attains its higher value when . This means that the probability of
event is . And its minimum value is attained in and , i.e., the probability of the
event happening is totally predictable. Thus, the entropy shows the degree of predictability of
an event.

Ear Shape Face Shape Whiskers Cat

drawing
Pointy Round Present 1

drawing
Floppy Not Round Present 1

drawing
Floppy Round Absent 0

Information Gain = H(pnode
1) − (wleftH (pleft

1) + wrightH (p
right
1)) ,

H

H(p1) = −p1log2(p1) − (1 − p1)log2(1 − p1)

H(p) p

p = 0.5
0.5 p = 0 p = 1

In [1]:
import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from utils import *

In [2]:
%matplotlib widget

_ = plot_entropy()

In []:

Ear Shape Face Shape Whiskers Cat

drawing
Pointy Not Round Present 0

drawing
Pointy Round Present 1

drawing
Pointy Round Absent 1

drawing
Floppy Not Round Absent 0

drawing
Pointy Round Absent 1

drawing
Floppy Round Absent 0

drawing
Floppy Round Absent 0

We will use one-hot encoding to encode the categorical features. They will be as follows:

• Ear Shape: Pointy = 1, Floppy = 0
• Face Shape: Round = 1, Not Round = 0
• Whiskers: Present = 1, Absent = 0

Therefore, we have two sets:

• X_train : for each example, contains 3 features:

 - Ear Shape (1 if pointy, 0 otherwise)

 - Face Shape (1 if round, 0 otherwise)

 - Whiskers (1 if present, 0 otherwise)

In []:

In [3]:
X_train = np.array([[1, 1, 1],

[0, 0, 1],

[0, 1, 0],

[1, 0, 1],

[1, 1, 1],

[1, 1, 0],

[0, 0, 0],

[1, 1, 0],

[0, 1, 0],

[0, 1, 0]])

y_train = np.array([1, 1, 0, 0, 1, 1, 0, 1, 0, 0])

array([1, 1, 1])

This means that the first example has a pointy ear shape, round face shape and it has
whiskers.

On each node, we compute the information gain for each feature, then split the node on the
feature with the higher information gain, by comparing the entropy of the node with the
weighted entropy in the two splitted nodes.

So, the root node has every animal in our dataset. Remember that is the proportion of

positive class (cats) in the root node. So

Now let's write a function to compute the entropy.

1.0

To illustrate, let's compute the information gain if we split the node for each of the features.
To do this, let's write some functions.

So, if we choose Ear Shape to split, then we must have in the left node (check the table
above) the indices:

and the right indices, the remaining ones.

In [4]:
#For instance, the first example

X_train[0]

Out[4]:

pnode
1

pnode
1 = = 0.5

5
10

In [5]:
def entropy(p):

if p == 0 or p == 1:

return 0

else:

return -p * np.log2(p) - (1- p)*np.log2(1 - p)

print(entropy(0.5))

In [6]:
def split_indices(X, index_feature):

"""Given a dataset and a index feature, return two lists for the two split nodes, the left node

 that feature = 1 and the right node those that have the feature = 0

 index feature = 0 => ear shape

 index feature = 1 => face shape

 index feature = 2 => whiskers

 """

left_indices = []

right_indices = []

for i,x in enumerate(X):

if x[index_feature] == 1:

left_indices.append(i)

else:

right_indices.append(i)

return left_indices, right_indices

0 3 4 5 7

([0, 3, 4, 5, 7], [1, 2, 6, 8, 9])

Now we need another function to compute the weighted entropy in the splitted nodes. As
you've seen in the video lecture, we must find:

• and , the proportion of animals in each node.
• and , the proportion of cats in each split.

Note the difference between these two definitions!! To illustrate, if we split the root node on
the feature of index 0 (Ear Shape), then in the left node, the one that has the animals 0, 3, 4, 5
and 7, we have:

0.7219280948873623

So, the weighted entropy in the 2 split nodes is 0.72. To compute the Information Gain we
must subtract it from the entropy in the node we chose to split (in this case, the root node).

0.2780719051126377

In [7]:
split_indices(X_train, 0)

Out[7]:

wleft wright

pleft pright

wleft = = 0.5 and pleft =
5
10

4
5

wright = = 0.5 and pright =
5
10

1
5

In [8]:
def weighted_entropy(X,y,left_indices,right_indices):

"""

 This function takes the splitted dataset, the indices we chose to split and returns the weighted

 """

w_left = len(left_indices)/len(X)

w_right = len(right_indices)/len(X)

p_left = sum(y[left_indices])/len(left_indices)

p_right = sum(y[right_indices])/len(right_indices)

weighted_entropy = w_left * entropy(p_left) + w_right * entropy(p_right)

return weighted_entropy

In [9]:
left_indices, right_indices = split_indices(X_train, 0)

weighted_entropy(X_train, y_train, left_indices, right_indices)

Out[9]:

In [10]:
def information_gain(X, y, left_indices, right_indices):

"""

 Here, X has the elements in the node and y is theirs respectives classes

 """

p_node = sum(y)/len(y)

h_node = entropy(p_node)

w_entropy = weighted_entropy(X,y,left_indices,right_indices)

return h_node - w_entropy

In [11]:
information_gain(X_train, y_train, left_indices, right_indices)

Out[11]:

Now, let's compute the information gain if we split the root node for each feature:

Feature: Ear Shape, information gain if we split the root node using this feature:

0.28

Feature: Face Shape, information gain if we split the root node using this featur

e: 0.03

Feature: Whiskers, information gain if we split the root node using this feature:

0.12

So, the best feature to split is indeed the Ear Shape. Run the code below to see the split in
action. You do not need to understand the following code block.

 Depth 0, Root: Split on feature: 0

 - Left leaf node with indices [0, 3, 4, 5, 7]

 - Right leaf node with indices [1, 2, 6, 8, 9]

The process is recursive, which means we must perform these calculations for each node
until we meet a stopping criteria:

• If the tree depth after splitting exceeds a threshold
• If the resulting node has only 1 class
• If the information gain of splitting is below a threshold

The final tree looks like this:

 Depth 0, Root: Split on feature: 0

- Depth 1, Left: Split on feature: 1

 -- Left leaf node with indices [0, 4, 5, 7]

 -- Right leaf node with indices [3]

- Depth 1, Right: Split on feature: 2

 -- Left leaf node with indices [1]

 -- Right leaf node with indices [2, 6, 8, 9]

Congratulations! You completed the notebook!

In [12]:
for i, feature_name in enumerate(['Ear Shape', 'Face Shape', 'Whiskers']):

left_indices, right_indices = split_indices(X_train, i)

i_gain = information_gain(X_train, y_train, left_indices, right_indices)

print(f"Feature: {feature_name}, information gain if we split the root node using this feature:

In [13]:
tree = []

build_tree_recursive(X_train, y_train, [0,1,2,3,4,5,6,7,8,9], "Root", max_depth=1,

generate_tree_viz([0,1,2,3,4,5,6,7,8,9], y_train, tree)

In [14]:
tree = []

build_tree_recursive(X_train, y_train, [0,1,2,3,4,5,6,7,8,9], "Root", max_depth=2,

generate_tree_viz([0,1,2,3,4,5,6,7,8,9], y_train, tree)

