
Optional Lab: Gradient Descent for Logistic
Regression

Goals

In this lab, you will:

• update gradient descent for logistic regression.

• explore gradient descent on a familiar data set

In [1]:

Data set

Let's start with the same two feature data set used in the decision boundary lab.

In [2]:

As before, we'll use a helper function to plot this data. The data points with label are shown as red

crosses, while the data points with label are shown as blue circles.

� = 1
� = 0

import copy, math
import numpy as np
%matplotlib widget
import matplotlib.pyplot as plt
from lab_utils_common import dlc, plot_data, plt_tumor_data, sigmoid, compute_cost_logistic
from plt_quad_logistic import plt_quad_logistic, plt_prob
plt.style.use('./deeplearning.mplstyle')

X_train = np.array([[0.5, 1.5], [1,1], [1.5, 0.5], [3, 0.5], [2, 2], [1, 2.5]])
y_train = np.array([0, 0, 0, 1, 1, 1])

1
2
3
4
5
6
7
8

1
2
3

http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W3_Lab06_Gradient_Descent_Soln.ipynb#Optional-Lab:-Gradient-Descent-for-Logistic-Regression
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W3_Lab06_Gradient_Descent_Soln.ipynb#Optional-Lab:-Gradient-Descent-for-Logistic-Regression
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W3_Lab06_Gradient_Descent_Soln.ipynb#Goals
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W3_Lab06_Gradient_Descent_Soln.ipynb#Goals
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W3_Lab06_Gradient_Descent_Soln.ipynb#Data-set
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W3_Lab06_Gradient_Descent_Soln.ipynb#Data-set

In [3]:

Logistic Gradient Descent

Recall the gradient descent algorithm

utilizes the gradient calculation:

Where each iteration performs simultaneous updates on for all , where

repeat until convergence: {

= − ��� ��
∂�(�, �)
∂��

� = � − � ∂�(�, �)
∂�

}

for j := 0..n-1 (1)

�� �

∂�(�, �)
∂��

∂�(�, �)
∂�

= (() −)1
� ∑
�=0

�−1
��,� �

(�) �(�) �(�)�

= (() −)1
� ∑
�=0

�−1
��,� �

(�) �(�)

(2)

(3)

fig,ax = plt.subplots(1,1,figsize=(4,4))
plot_data(X_train, y_train, ax)

ax.axis([0, 4, 0, 3.5])
ax.set_ylabel('x_1', fontsize=12)
ax.set_xlabel('x_0', fontsize=12)
plt.show()

1
2
3
4
5
6
7
8

http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W3_Lab06_Gradient_Descent_Soln.ipynb#Logistic-Gradient-Descent
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W3_Lab06_Gradient_Descent_Soln.ipynb#Logistic-Gradient-Descent

• m is the number of training examples in the data set

• is the model's prediction, while is the target

• For a logistic regression model

where is the sigmoid function:

()��,� �
(�) �(�)

� = � ⋅ � + �
(�) = �(�)��,�
�(�)

�(�) = 1
1+�−�

Gradient Descent Implementation

The gradient descent algorithm implementation has two components:

• The loop implementing equation (1) above. This is gradient_descent below and is generally

provided to you in optional and practice labs.

• The calculation of the current gradient, equations (2,3) above. This is

compute_gradient_logistic below. You will be asked to implement this week's practice lab.

Calculating the Gradient, Code Description

Implements equation (2),(3) above for all and . There are many ways to implement this. Outlined

below is this:

• initialize variables to accumulate dj_dw and dj_db

• for each example

▪ calculate the error for that example

▪ for each input value in this example,

◦ multiply the error by the input , and add to the corresponding element of dj_dw .

(equation 2 above)

▪ add the error to dj_db (equation 3 above)

• divide dj_db and dj_dw by total number of examples (m)

• note that in numpy X[i,:] or X[i] and is X[i,j]

�� �

�(� ⋅ + �) −�(�) �(�)

�
(�)
�

�
(�)
�

�(�) �
(�)
�

http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W3_Lab06_Gradient_Descent_Soln.ipynb#Gradient-Descent-Implementation
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W3_Lab06_Gradient_Descent_Soln.ipynb#Gradient-Descent-Implementation
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W3_Lab06_Gradient_Descent_Soln.ipynb#Calculating-the-Gradient,-Code-Description
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W3_Lab06_Gradient_Descent_Soln.ipynb#Calculating-the-Gradient,-Code-Description

In [7]:

Check the implementation of the gradient function using the cell below.

In [8]:

Expected output

dj_db: 0.49861806546328574

dj_dw: [0.498333393278696, 0.49883942983996693]

Gradient Descent Code

The code implementing equation (1) above is implemented below. Take a moment to locate and

compare the functions in the routine to the equations above.

dj_db: 0.49861806546328574
dj_dw: [0.498333393278696, 0.49883942983996693]

def compute_gradient_logistic(X, y, w, b):
"""

 Computes the gradient for linear regression

 Args:
 X (ndarray (m,n): Data, m examples with n features
 y (ndarray (m,)): target values
 w (ndarray (n,)): model parameters
 b (scalar) : model parameter
 Returns
 dj_dw (ndarray (n,)): The gradient of the cost w.r.t. the parameters w.
 dj_db (scalar) : The gradient of the cost w.r.t. the parameter b.
 """

m,n = X.shape
dj_dw = np.zeros((n,)) #(n,)
dj_db = 0.

for i in range(m):
f_wb_i = sigmoid(np.dot(X[i],w) + b) #(n,)(n,)=scalar
err_i = f_wb_i - y[i] #scalar
for j in range(n):

dj_dw[j] = dj_dw[j] + err_i * X[i,j] #scalar
dj_db = dj_db + err_i

dj_dw = dj_dw/m #(n,)
dj_db = dj_db/m #scalar

return dj_db, dj_dw

X_tmp = np.array([[0.5, 1.5], [1,1], [1.5, 0.5], [3, 0.5], [2, 2], [1, 2.5]])
y_tmp = np.array([0, 0, 0, 1, 1, 1])
w_tmp = np.array([2.,3.])
b_tmp = 1.
dj_db_tmp, dj_dw_tmp = compute_gradient_logistic(X_tmp, y_tmp, w_tmp, b_tmp)
print(f"dj_db: {dj_db_tmp}")
print(f"dj_dw: {dj_dw_tmp.tolist()}")

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

1
2
3
4
5
6
7
8

http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W3_Lab06_Gradient_Descent_Soln.ipynb#Gradient-Descent-Code
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W3_Lab06_Gradient_Descent_Soln.ipynb#Gradient-Descent-Code

In [9]:

Let's run gradient descent on our data set.

In [10]:

Let's plot the results of gradient descent:

Iteration 0: Cost 0.684610468560574
Iteration 1000: Cost 0.1590977666870457
Iteration 2000: Cost 0.08460064176930078
Iteration 3000: Cost 0.05705327279402531
Iteration 4000: Cost 0.04290759421682
Iteration 5000: Cost 0.03433847729884557
Iteration 6000: Cost 0.02860379802212006
Iteration 7000: Cost 0.02450156960879306
Iteration 8000: Cost 0.02142370332569295
Iteration 9000: Cost 0.019030137124109114

updated parameters: w:[5.28 5.08], b:-14.222409982019837

def gradient_descent(X, y, w_in, b_in, alpha, num_iters):
"""

 Performs batch gradient descent

 Args:
 X (ndarray (m,n) : Data, m examples with n features
 y (ndarray (m,)) : target values
 w_in (ndarray (n,)): Initial values of model parameters
 b_in (scalar) : Initial values of model parameter
 alpha (float) : Learning rate
 num_iters (scalar) : number of iterations to run gradient descent

 Returns:
 w (ndarray (n,)) : Updated values of parameters
 b (scalar) : Updated value of parameter
 """

An array to store cost J and w's at each iteration primarily for graphing later
J_history = []
w = copy.deepcopy(w_in) #avoid modifying global w within function
b = b_in

for i in range(num_iters):
Calculate the gradient and update the parameters
dj_db, dj_dw = compute_gradient_logistic(X, y, w, b)

Update Parameters using w, b, alpha and gradient
w = w - alpha * dj_dw
b = b - alpha * dj_db

Save cost J at each iteration
if i<100000: # prevent resource exhaustion

J_history.append(compute_cost_logistic(X, y, w, b))

Print cost every at intervals 10 times or as many iterations if < 10
if i% math.ceil(num_iters / 10) == 0:

print(f"Iteration {i:4d}: Cost {J_history[-1]} ")

return w, b, J_history #return final w,b and J history for graphing

w_tmp = np.zeros_like(X_train[0])
b_tmp = 0.
alph = 0.1
iters = 10000

w_out, b_out, _ = gradient_descent(X_train, y_train, w_tmp, b_tmp, alph, iters)
print(f"\nupdated parameters: w:{w_out}, b:{b_out}")

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

1
2
3
4
5
6
7
8

http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W3_Lab06_Gradient_Descent_Soln.ipynb#Let's-plot-the-results-of-gradient-descent:
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W3_Lab06_Gradient_Descent_Soln.ipynb#Let's-plot-the-results-of-gradient-descent:

In [11]:

In the plot above:

• the shading reflects the probability y=1 (result prior to decision boundary)

• the decision boundary is the line at which the probability = 0.5

Another Data set

Let's return to a one-variable data set. With just two parameters, , , it is possible to plot the cost

function using a contour plot to get a better idea of what gradient descent is up to.

� �

In [12]:

As before, we'll use a helper function to plot this data. The data points with label are shown as red

crosses, while the data points with label are shown as blue circles.

� = 1
� = 0

fig,ax = plt.subplots(1,1,figsize=(5,4))
plot the probability
plt_prob(ax, w_out, b_out)

Plot the original data
ax.set_ylabel(r'x_1')
ax.set_xlabel(r'x_0')
ax.axis([0, 4, 0, 3.5])
plot_data(X_train,y_train,ax)

Plot the decision boundary
x0 = -b_out/w_out[0]
x1 = -b_out/w_out[1]
ax.plot([0,x0],[x1,0], c=dlc["dlblue"], lw=1)
plt show()

x_train = np.array([0., 1, 2, 3, 4, 5])
y_train = np.array([0, 0, 0, 1, 1, 1])

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

1
2
3

http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W3_Lab06_Gradient_Descent_Soln.ipynb#Another-Data-set
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W3_Lab06_Gradient_Descent_Soln.ipynb#Another-Data-set

In [13]:

In the plot below, try:

• changing and by clicking within the contour plot on the upper right.

▪ changes may take a second or two

▪ note the changing value of cost on the upper left plot.

▪ note the cost is accumulated by a loss on each example (vertical dotted lines)

• run gradient descent by clicking the orange button.

▪ note the steadily decreasing cost (contour and cost plot are in log(cost)

▪ clicking in the contour plot will reset the model for a new run

• to reset the plot, rerun the cell

� �

fig,ax = plt.subplots(1,1,figsize=(4,3))
plt_tumor_data(x_train, y_train, ax)
plt.show()

1
2
3
4

In [14]:

Congratulations!

You have:

• examined the formulas and implementation of calculating the gradient for logistic regression

• utilized those routines in

▪ exploring a single variable data set

▪ exploring a two-variable data set

In []:

w_range = np.array([-1, 7])
b_range = np.array([1, -14])
quad = plt_quad_logistic(x_train, y_train, w_range, b_range)

1
2
3
4

1

http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W3_Lab06_Gradient_Descent_Soln.ipynb#Congratulations!
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W3_Lab06_Gradient_Descent_Soln.ipynb#Congratulations!

