
Optional Lab: Cost Function for Logistic
Regression

Goals

In this lab, you will:

• examine the implementation and utilize the cost function for logistic regression.

In [1]:

Dataset

Let's start with the same dataset as was used in the decision boundary lab.

In [2]:

We will use a helper function to plot this data. The data points with label are shown as red

crosses, while the data points with label are shown as blue circles.

� = 1
� = 0

import numpy as np
%matplotlib widget
import matplotlib.pyplot as plt
from lab_utils_common import plot_data, sigmoid, dlc
plt.style.use('./deeplearning.mplstyle')

X_train = np.array([[0.5, 1.5], [1,1], [1.5, 0.5], [3, 0.5], [2, 2], [1, 2.5]])
y_train = np.array([0, 0, 0, 1, 1, 1])

1
2
3
4
5
6

1
2
3

http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W3_Lab05_Cost_Function_Soln.ipynb#Optional-Lab:-Cost-Function-for-Logistic-Regression
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W3_Lab05_Cost_Function_Soln.ipynb#Optional-Lab:-Cost-Function-for-Logistic-Regression
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W3_Lab05_Cost_Function_Soln.ipynb#Goals
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W3_Lab05_Cost_Function_Soln.ipynb#Goals
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W3_Lab05_Cost_Function_Soln.ipynb#Dataset
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W3_Lab05_Cost_Function_Soln.ipynb#Dataset

In [3]:

Cost function

In a previous lab, you developed the logistic loss function. Recall, loss is defined to apply to one

example. Here you combine the losses to form the cost, which includes all the examples.

Recall that for logistic regression, the cost function is of the form

where

• is the cost for a single data point, which is:

• where m is the number of training examples in the data set and:

�(�, �) = [����((),)]1
� ∑
�=0

�−1
��,� �

(�) �(�) (1)

����((),)��,� �
(�) �(�)

����((),) = − log(()) − (1 −) log(1 − ())��,� �
(�) �(�) �(�) ��,� �

(�) �(�) ��,� �
(�) (2)

()��,� �
(�)

�(�)

�()�(�)

= �()�(�)

= � ⋅ + ��(�)

= 1
1 + �−�(�)

(3)
(4)

(5)

Code Description

The algorithm for compute_cost_logistic loops over all the examples calculating the loss for each

example and accumulating the total.

fig,ax = plt.subplots(1,1,figsize=(4,4))
plot_data(X_train, y_train, ax)

Set both axes to be from 0-4
ax.axis([0, 4, 0, 3.5])
ax.set_ylabel('x_1', fontsize=12)
ax.set_xlabel('x_0', fontsize=12)
plt.show()

1
2
3
4
5
6
7
8
9

http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W3_Lab05_Cost_Function_Soln.ipynb#Cost-function
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W3_Lab05_Cost_Function_Soln.ipynb#Cost-function
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W3_Lab05_Cost_Function_Soln.ipynb#Code-Description
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W3_Lab05_Cost_Function_Soln.ipynb#Code-Description

Note that the variables X and y are not scalar values but matrices of shape () and (,) respectively,

where is the number of features and is the number of training examples.

�, � �
� �

In [4]:

Check the implementation of the cost function using the cell below.

In [5]:

Expected output: 0.3668667864055175

Example

Now, let's see what the cost function output is for a different value of .

• In a previous lab, you plotted the decision boundary for . That is, you had

b = -3, w = np.array([1,1]) .

• Let's say you want to see if , or b = -4, w = np.array([1,1])

provides a better model.

Let's first plot the decision boundary for these two different values to see which one fits the data better.

• For , we'll plot (shown in blue)

• For , we'll plot (shown in magenta)

�

� = −3, = 1, = 1�0 �1

� = −4, = 1, = 1�0 �1

�

� = −3, = 1, = 1�0 �1 −3 + + = 0�0 �1
� = −4, = 1, = 1�0 �1 −4 + + = 0�0 �1

0.36686678640551745

def compute_cost_logistic(X, y, w, b):
"""

 Computes cost

 Args:
 X (ndarray (m,n)): Data, m examples with n features
 y (ndarray (m,)) : target values
 w (ndarray (n,)) : model parameters
 b (scalar) : model parameter

 Returns:
 cost (scalar): cost
 """

m = X.shape[0]
cost = 0.0
for i in range(m):

z_i = np.dot(X[i],w) + b
f_wb_i = sigmoid(z_i)
cost += -y[i]*np.log(f_wb_i) - (1-y[i])*np.log(1-f_wb_i)

cost = cost / m
return cost

w_tmp = np.array([1,1])
b_tmp = -3
print(compute_cost_logistic(X_train, y_train, w_tmp, b_tmp))

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

1
2
3
4

http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W3_Lab05_Cost_Function_Soln.ipynb#Example
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W3_Lab05_Cost_Function_Soln.ipynb#Example

In [6]:

You can see from this plot that b = -4, w = np.array([1,1]) is a worse model for the training data.

Let's see if the cost function implementation reflects this.

In [7]:

Expected output

Cost for b = -3 : 0.36686678640551745
Cost for b = -4 : 0.5036808636748461

import matplotlib.pyplot as plt

Choose values between 0 and 6
x0 = np.arange(0,6)

Plot the two decision boundaries
x1 = 3 - x0
x1_other = 4 - x0

fig,ax = plt.subplots(1, 1, figsize=(4,4))
Plot the decision boundary
ax.plot(x0,x1, c=dlc["dlblue"], label="b=-3")
ax.plot(x0,x1_other, c=dlc["dlmagenta"], label="b=-4")
ax.axis([0, 4, 0, 4])

Plot the original data
plot_data(X_train,y_train,ax)
ax.axis([0, 4, 0, 4])
ax.set_ylabel('x_1', fontsize=12)
ax.set_xlabel('x_0', fontsize=12)
plt.legend(loc="upper right")
plt.title("Decision Boundary")
plt.show()

w_array1 = np.array([1,1])
b_1 = -3
w_array2 = np.array([1,1])
b_2 = -4

print("Cost for b = -3 : ", compute_cost_logistic(X_train, y_train, w_array1, b_1
print("Cost for b = -4 : ", compute_cost_logistic(X_train, y_train, w_array2, b_2

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

1
2
3
4
5
6
7
8

Cost for b = -3 : 0.3668667864055175

Cost for b = -4 : 0.5036808636748461

You can see the cost function behaves as expected and the cost for b = -4, w = np.array([1,1])

is indeed higher than the cost for b = -3, w = np.array([1,1])

Congratulations!

In this lab you examined and utilized the cost function for logistic regression.

In []: 1

http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W3_Lab05_Cost_Function_Soln.ipynb#Congratulations!
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W3_Lab05_Cost_Function_Soln.ipynb#Congratulations!

