# Optional Lab: Logistic Regression, Decision Boundary

## Goals

In this lab, you will:

• Plot the decision boundary for a logistic regression model. This will give you a better sense of what the model is predicting.

In [1]:

```
1 import numpy as np
2 %matplotlib widget
3 import matplotlib.pyplot as plt
4 from lab_utils_common import plot_data, sigmoid, draw_vthresh
5 plt.style.use('./deeplearning.mplstyle')
```

## Dataset

Let's suppose you have following training dataset

- The input variable X is a numpy array which has 6 training examples, each with two features
- The output variable y is also a numpy array with 6 examples, and y is either 0 or 1

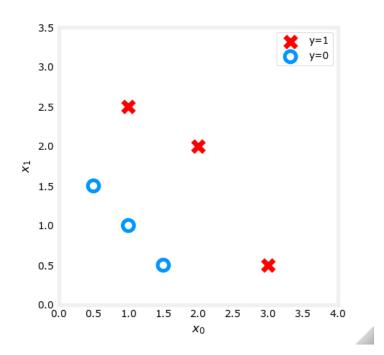
In [2]:

1 X = np.array([[0.5, 1.5], [1,1], [1.5, 0.5], [3, 0.5], [2, 2], [1, 2.5]]) 2 y = np.array([0, 0, 0, 1, 1, 1]).reshape(-1,1)

### **Plot data**

Let's use a helper function to plot this data. The data points with label y = 1 are shown as red crosses, while the data points with label y = 0 are shown as blue circles.

In [3]: 1 fig,ax = plt.subplots(1,1,figsize=(4,4))
2 plot\_data(X, y, ax)
3
4 ax.axis([0, 4, 0, 3.5])
5 ax.set\_ylabel('\$x\_1\$')
6 ax.set\_xlabel('\$x\_0\$')
7 plt.show()



## Logistic regression model

· Suppose you'd like to train a logistic regression model on this data which has the form

$$f(x) = g(w_0 x_0 + w_1 x_1 + b)$$

where  $g(z) = \frac{1}{1+e^{-z}}$ , which is the sigmoid function

• Let's say that you trained the model and get the parameters as b = -3,  $w_0 = 1$ ,  $w_1 = 1$ . That is,

$$f(x) = g(x_0 + x_1 - 3)$$

(You'll learn how to fit these parameters to the data further in the course)

Let's try to understand what this trained model is predicting by plotting its decision boundary

#### Refresher on logistic regression and decision boundary

· Recall that for logistic regression, the model is represented as

$$f_{\mathbf{w},b}(\mathbf{x}^{(i)}) = g(\mathbf{w} \cdot \mathbf{x}^{(i)} + b)$$
(1)

where g(z) is known as the sigmoid function and it maps all input values to values between 0 and 1:

$$g(z) = \frac{1}{1 + e^{-z}}$$
(2)

and  $\boldsymbol{w} \cdot \boldsymbol{x}$  is the vector dot product:

$$\mathbf{w} \cdot \mathbf{x} = w_0 x_0 + w_1 x_1$$

• We interpret the output of the model  $(f_{\mathbf{w},b}(x))$  as the probability that y = 1 given  $\mathbf{x}$  and

parameterized by  $\mathbf{w}$  and b.

Therefore, to get a final prediction (y = 0 or y = 1) from the logistic regression model, we can
use the following heuristic -

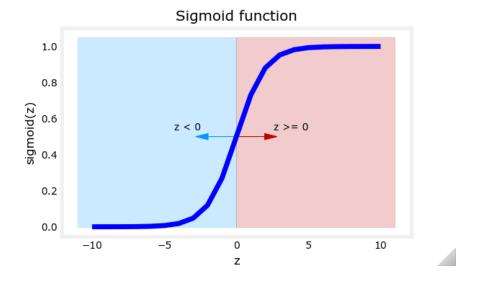
if  $f_{\mathbf{w},b}(x) \ge 0.5$ , predict y = 1

if  $f_{\mathbf{w},b}(x) < 0.5$ , predict y = 0

• Let's plot the sigmoid function to see where  $g(z) \ge 0.5$ 

```
In [4]:
             # Plot sigmoid(z) over a range of values from -10 to 10
          1
             z = np.arange(-10, 11)
          2
          3
            fig,ax = plt.subplots(1,1,figsize=(5,3))
          4
             # Plot z vs sigmoid(z)
          5
          6
            ax.plot(z, sigmoid(z), c="b")
          7
            ax.set_title("Sigmoid function")
          8
          9
            ax.set_ylabel('sigmoid(z)')
         10 ax.set_xlabel('z')
         11
            draw_vthresh(ax,0)
```





• As you can see,  $g(z) \ge 0.5$  for  $z \ge 0$ 

• For a logistic regression model,  $z = \mathbf{w} \cdot \mathbf{x} + b$ . Therefore,

if  $\mathbf{w} \cdot \mathbf{x} + b \ge 0$ , the model predicts y = 1

if  $\mathbf{w} \cdot \mathbf{x} + b < 0$ , the model predicts y = 0

#### Plotting decision boundary

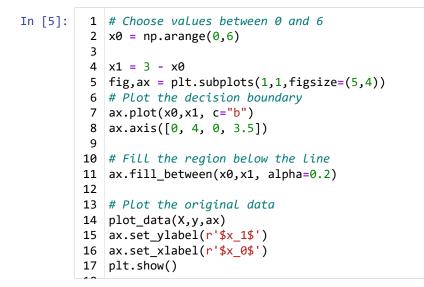
Now, let's go back to our example to understand how the logistic regression model is making predictions.

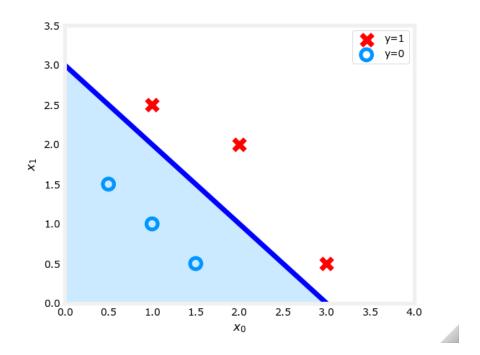
· Our logistic regression model has the form

 $f(\mathbf{x}) = g(-3 + x_0 + x_1)$ 

• From what you've learnt above, you can see that this model predicts y = 1 if  $-3 + x_0 + x_1 \ge 0$ 

Let's see what this looks like graphically. We'll start by plotting  $-3 + x_0 + x_1 = 0$ , which is equivalent to  $x_1 = 3 - x_0$ .





- In the plot above, the blue line represents the line x<sub>0</sub> + x<sub>1</sub> − 3 = 0 and it should intersect the x1 axis at 3 (if we set x<sub>1</sub> = 3, x<sub>0</sub> = 0) and the x0 axis at 3 (if we set x<sub>1</sub> = 0, x<sub>0</sub> = 3).
- The shaded region represents  $-3 + x_0 + x_1 < 0$ . The region above the line is  $-3 + x_0 + x_1 > 0$ .
- Any point in the shaded region (under the line) is classified as y = 0. Any point on or above the line
  is classified as y = 1. This line is known as the "decision boundary".

As we've seen in the lectures, by using higher order polynomial terms (eg:  $f(x) = g(x_0^2 + x_1 - 1)$ ), we can come up with more complex non-linear boundaries.

# **Congratulations!**

You have explored the decision boundary in the context of logistic regression.



In [ ]: