
Optional Lab: Logistic Regression
In this ungraded lab, you will

• explore the sigmoid function (also known as the logistic function)

• explore logistic regression; which uses the sigmoid function

In [1]:

Sigmoid or Logistic Function

As discussed in the lecture videos, for a classification

task, we can start by using our linear regression model,

, to predict  given .

• However, we would like the predictions of our

classification model to be between 0 and 1 since our

output variable  is either 0 or 1.

• This can be accomplished by using a "sigmoid function"

which maps all input values to values between 0 and 1.

Let's implement the sigmoid function and see this for

ourselves.

Formula for Sigmoid
function

The formula for a sigmoid function is as follows -

In the case of logistic regression, z (the input to the sigmoid function), is the output of a linear regression

model.

• In the case of a single example,  is scalar.

• in the case of multiple examples,  may be a vector consisting of  values, one for each example.

• The implementation of the sigmoid function should cover both of these potential input formats. Let's

implement this in Python.
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NumPy has a function called exp()  (https://numpy.org/doc/stable/reference/generated

/numpy.exp.html), which offers a convenient way to calculate the exponential ( ) of all elements in the

input array ( z ).

It also works with a single number as an input, as shown below.

��

import numpy as np
%matplotlib widget
import matplotlib.pyplot as plt
from plt_one_addpt_onclick import plt_one_addpt_onclick
from lab_utils_common import draw_vthresh
plt.style.use('./deeplearning.mplstyle')
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The sigmoid  function is implemented in python as shown in the cell below.

In [3]:

Let's see what the output of this function is for various value of z

Input to exp: [1 2 3]
Output of exp: [ 2.72  7.39 20.09]
Input to exp: 1
Output of exp: 2.718281828459045

# Input is an array. 
input_array = np.array([1,2,3])
exp_array = np.exp(input_array)

print("Input to exp:", input_array)
print("Output of exp:", exp_array)

# Input is a single number
input_val = 1
exp_val = np.exp(input_val)

print("Input to exp:", input_val)
print("Output of exp:", exp_val)

def sigmoid(z):
"""

    Compute the sigmoid of z

    Args:
        z (ndarray): A scalar, numpy array of any size.

    Returns:
        g (ndarray): sigmoid(z), with the same shape as z

    """

g = 1/(1+np.exp(-z))

return g
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In [4]:

The values in the left column are z , and the values in the right column are sigmoid(z) . As you can

see, the input values to the sigmoid range from -10 to 10, and the output values range from 0 to 1.

Now, let's try to plot this function using the matplotlib  library.

Input (z), Output (sigmoid(z))
[[-1.000e+01  4.540e-05]
 [-9.000e+00  1.234e-04]
 [-8.000e+00  3.354e-04]
 [-7.000e+00  9.111e-04]
 [-6.000e+00  2.473e-03]
 [-5.000e+00  6.693e-03]
 [-4.000e+00  1.799e-02]
 [-3.000e+00  4.743e-02]
 [-2.000e+00  1.192e-01]
 [-1.000e+00  2.689e-01]
 [ 0.000e+00  5.000e-01]
 [ 1.000e+00  7.311e-01]
 [ 2.000e+00  8.808e-01]
 [ 3.000e+00  9.526e-01]
 [ 4.000e+00  9.820e-01]
 [ 5.000e+00  9.933e-01]
 [ 6.000e+00  9.975e-01]
 [ 7.000e+00  9.991e-01]
 [ 8.000e+00  9.997e-01]
 [ 9.000e+00  9.999e-01]
 [ 1.000e+01  1.000e+00]]

# Generate an array of evenly spaced values between -10 and 10
z_tmp = np.arange(-10,11)

# Use the function implemented above to get the sigmoid values
y = sigmoid(z_tmp)

# Code for pretty printing the two arrays next to each other
np.set_printoptions(precision=3) 
print("Input (z), Output (sigmoid(z))")
print(np.c_[z_tmp, y])

1
2
3
4
5
6
7
8
9

10
11



In [5]:

As you can see, the sigmoid function approaches 0  as z  goes to large negative values and

approaches 1  as z  goes to large positive values.

Logistic Regression

A logistic regression model applies the sigmoid to the

familiar linear regression model as shown below:

where
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Let's apply logistic regression to the categorical data example of tumor classification.

First, load the examples and initial values for the parameters.

Figure 1

# Plot z vs sigmoid(z)
fig,ax = plt.subplots(1,1,figsize=(5,3))
ax.plot(z_tmp, y, c="b")

ax.set_title("Sigmoid function")
ax.set_ylabel('sigmoid(z)')
ax.set_xlabel('z')
draw_vthresh(ax,0)
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Try the following steps:

• Click on 'Run Logistic Regression' to find the best logistic regression model for the given training

data

▪ Note the resulting model fits the data quite well.

▪ Note, the orange line is ' ' or  above. It does not match the line in a linear

regression model. Further improve these results by applying a threshold.

• Tick the box on the 'Toggle 0.5 threshold' to show the predictions if a threshold is applied.

▪ These predictions look good. The predictions match the data

▪ Now, add further data points in the large tumor size range (near 10), and re-run logistic

regression.

▪ unlike the linear regression model, this model continues to make correct predictions

� � ⋅ + ��(�)

In [7]:

Congratulations!

You have explored the use of the sigmoid function in logistic regression.

In [ ]:

x_train = np.array([0., 1, 2, 3, 4, 5])
y_train = np.array([0,  0, 0, 1, 1, 1])

w_in = np.zeros((1))
b_in = 0

plt.close('all') 
addpt = plt_one_addpt_onclick( x_train,y_train, w_in, b_in, logistic=True)
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