
Logistic Regression
In this exercise, you will implement logistic regression and apply it to two different
datasets.

Outline
• 1 - Packages
• 2 - Logistic Regression

▪ 2.1 Problem Statement
▪ 2.2 Loading and visualizing the data
▪ 2.3 Sigmoid function
▪ 2.4 Cost function for logistic regression
▪ 2.5 Gradient for logistic regression
▪ 2.6 Learning parameters using gradient descent
▪ 2.7 Plotting the decision boundary
▪ 2.8 Evaluating logistic regression

• 3 - Regularized Logistic Regression
▪ 3.1 Problem Statement
▪ 3.2 Loading and visualizing the data
▪ 3.3 Feature mapping
▪ 3.4 Cost function for regularized logistic regression
▪ 3.5 Gradient for regularized logistic regression
▪ 3.6 Learning parameters using gradient descent
▪ 3.7 Plotting the decision boundary
▪ 3.8 Evaluating regularized logistic regression model

1 - Packages
First, let's run the cell below to import all the packages that you will need during
this assignment.

• numpy is the fundamental package for scientific computing with Python.
• matplotlib is a famous library to plot graphs in Python.
• utils.py contains helper functions for this assignment. You do not need to

modify code in this file.

In [1]:
import numpy as np

import matplotlib.pyplot as plt

from utils import *

import copy

import math

2 - Logistic Regression
In this part of the exercise, you will build a logistic regression model to predict
whether a student gets admitted into a university.

2.1 Problem Statement

Suppose that you are the administrator of a university department and you want
to determine each applicant’s chance of admission based on their results on two
exams.

• You have historical data from previous applicants that you can use as a
training set for logistic regression.

• For each training example, you have the applicant’s scores on two exams and
the admissions decision.

• Your task is to build a classification model that estimates an applicant’s
probability of admission based on the scores from those two exams.

2.2 Loading and visualizing the data

You will start by loading the dataset for this task.

• The load_dataset() function shown below loads the data into variables
X_train and y_train
▪ X_train contains exam scores on two exams for a student
▪ y_train is the admission decision

◦ y_train = 1 if the student was admitted
◦ y_train = 0 if the student was not admitted

▪ Both X_train and y_train are numpy arrays.

View the variables

Let's get more familiar with your dataset.

• A good place to start is to just print out each variable and see what it
contains.

The code below prints the first five values of X_train and the type of the
variable.

%matplotlib inline

In [2]:
load dataset

X_train, y_train = load_data("data/ex2data1.txt")

In [3]:
print("First five elements in X_train are:\n", X_train[:5])

print("Type of X_train:",type(X_train))

First five elements in X_train are:

 [[34.62365962 78.02469282]

 [30.28671077 43.89499752]

 [35.84740877 72.90219803]

 [60.18259939 86.3085521]

 [79.03273605 75.34437644]]

Type of X_train: <class 'numpy.ndarray'>

Now print the first five values of y_train

First five elements in y_train are:

 [0. 0. 0. 1. 1.]

Type of y_train: <class 'numpy.ndarray'>

Check the dimensions of your variables

Another useful way to get familiar with your data is to view its dimensions. Let's
print the shape of X_train and y_train and see how many training examples
we have in our dataset.

The shape of X_train is: (100, 2)

The shape of y_train is: (100,)

We have m = 100 training examples

Visualize your data

Before starting to implement any learning algorithm, it is always good to visualize
the data if possible.

• The code below displays the data on a 2D plot (as shown below), where the
axes are the two exam scores, and the positive and negative examples are
shown with different markers.

• We use a helper function in the utils.py file to generate this plot.

print("Type of X_train:",type(X_train))

In [4]:
print("First five elements in y_train are:\n", y_train[:5])

print("Type of y_train:",type(y_train))

In [5]:
print ('The shape of X_train is: ' + str(X_train.shape))

print ('The shape of y_train is: ' + str(y_train.shape))

print ('We have m = %d training examples' % (len(y_train)))

Your goal is to build a logistic regression model to fit this data.

• With this model, you can then predict if a new student will be admitted based
on their scores on the two exams.

2.3 Sigmoid function

Recall that for logistic regression, the model is represented as

where function is the sigmoid function. The sigmoid function is defined as:

Let's implement the sigmoid function first, so it can be used by the rest of this
assignment.

Exercise 1

Please complete the sigmoid function to calculate

In [6]:
Plot examples

plot_data(X_train, y_train[:], pos_label="Admitted", neg_label="Not admitted"

Set the y-axis label

plt.ylabel('Exam 2 score')

Set the x-axis label

plt.xlabel('Exam 1 score')

plt.legend(loc="upper right")

plt.show()

f

w,b

(x) = g(w ⋅ x + b)

g

g(z) =

1

1 + e

−z

g(z)

1

Note that

• z is not always a single number, but can also be an array of numbers.
• If the input is an array of numbers, we'd like to apply the sigmoid function to

each value in the input array.

If you get stuck, you can check out the hints presented after the cell below to help
you with the implementation.

Click for hints
numpy has a function called np.exp() , which offers a convinient way to

calculate the exponential () of all elements in the input array (z).

Click for more hints

• You can translate into code as np.exp(-z)

• You can translate into code as 1/np.exp(-z)

If you're still stuck, you can check the hints presented below to figure out how
to calculate g

Hint to calculate g g = 1 / (1 + np.exp(-z))

When you are finished, try testing a few values by calling sigmoid(x) in the cell
below.

• For large positive values of x, the sigmoid should be close to 1, while for large
negative values, the sigmoid should be close to 0.

• Evaluating sigmoid(0) should give you exactly 0.5.

g(z) =

1 + e

−z

In [11]:
UNQ_C1

GRADED FUNCTION: sigmoid

def sigmoid(z):

"""

 Compute the sigmoid of z

 Args:

 z (ndarray): A scalar, numpy array of any size.

 Returns:

 g (ndarray): sigmoid(z), with the same shape as z

 """

START CODE HERE ###

g = 1/(1+np.exp(-z))

END SOLUTION ###

return g

e

z

e

−z

1/e

−z

In [12]:

sigmoid(0) = 0.5

Expected Output:

sigmoid(0) 0.5

• As mentioned before, your code should also work with vectors and matrices.
For a matrix, your function should perform the sigmoid function on every
element.

sigmoid([-1, 0, 1, 2]) = [0.26894142 0.5 0.73105858 0.88079708]

All tests passed!

Expected Output:

sigmoid([-1, 0, 1, 2]) [0.26894142 0.5 0.73105858 0.88079708]

2.4 Cost function for logistic regression

In this section, you will implement the cost function for logistic regression.

Exercise 2

Please complete the compute_cost function using the equations below.

Recall that for logistic regression, the cost function is of the form

where

• m is the number of training examples in the dataset

• is the cost for a single data point, which is -

• is the model's prediction, while , which is the actual label

• where function is the sigmoid function.

▪ It might be helpful to first calculate an intermediate variable

 where is the

In [12]:
print ("sigmoid(0) = " + str(sigmoid(0)))

In [13]:
print ("sigmoid([-1, 0, 1, 2]) = " + str(sigmoid(np.array([-1, 0, 1, 2]))))

UNIT TESTS

from public_tests import *

sigmoid_test(sigmoid)

J(w, b) =

1

m

m−1

∑

i=0

[loss(f

w,b

(x

(i)

), y

(i)

)] (1)

loss(f

w,b

(x

(i)

), y

(i)

)

loss(f

w,b

(x

(i)

), y

(i)

) = (−y

(i)

log (f

w,b

(x

(i)

)) − (1 − y

(i)

) log (1 − f

w

f

w,b

(x

(i)

) y

(i)

f

w,b

(x

(i)

) = g(w ⋅ x

(i)

+ b) g

z

w,b

(x

(i)

) = w ⋅ x

(i)

+ b = w

0

x

(i)

0

+. . . +w

n−1

x

(i)

n−1

+ b n

number of features, before calculating

Note:

• As you are doing this, remember that the variables X_train and y_train
are not scalar values but matrices of shape () and (,1) respectively,
where is the number of features and is the number of training examples.

• You can use the sigmoid function that you implemented above for this part.

If you get stuck, you can check out the hints presented after the cell below to help
you with the implementation.

Click for hints

• You can represent a summation operator eg: in code as follows:

```python 

    h = 0

    for i in range(m):

        h = h + 2*i

```

• In this case, you can iterate over all the examples in X using a for loop and
add the loss from each iteration to a variable (loss_sum) initialized
outside the loop.

f

w,b

(x

(i)

) = g(z

w,b

(x

(i)

))

m, n m

n m

In [18]:
UNQ_C2

GRADED FUNCTION: compute_cost

def compute_cost(X, y, w, b, lambda_= 1):

"""

 Computes the cost over all examples

 Args:

 X : (ndarray Shape (m,n)) data, m examples by n features

 y : (array_like Shape (m,)) target value

 w : (array_like Shape (n,)) Values of parameters of the model

 b : scalar Values of bias parameter of the model

 lambda_: unused placeholder

 Returns:

 total_cost: (scalar) cost

 """

m, n = X.shape

START CODE HERE

cost = 0

for i in range(m):

z = np.dot(X[i],w) + b

f_wb = sigmoid(z)

cost += -y[i]*np.log(f_wb) - (1-y[i])*np.log(1-f_wb)

total_cost = cost/m

END CODE HERE ###

return total_cost

h =

m−1

∑

i=0

2i

outside the loop.

• Then, you can return the total_cost as loss_sum divided by m .

<details>

 <summary> Click

for more hints</summary>

* Here's how you can structure the overall implementation

for this function

```python 

def compute_cost(X, y, w, b, lambda_= 1):

    m, n = X.shape

    ### START CODE HERE ###

    loss_sum = 0 

    # Loop over each training example

    for i in range(m): 

        # First calculate z_wb = w[0]*X[i][0]+...+w[n-

1]*X[i][n-1]+b

        z_wb = 0 

        # Loop over each feature

        for j in range(n): 

            # Add the corresponding term to z_wb

            z_wb_ij = # Your code here to calculate w[j] * 

X[i][j]

            z_wb += z_wb_ij # equivalent to z_wb = z_wb + 

z_wb_ij

        # Add the bias term to z_wb

        z_wb += b # equivalent to z_wb = z_wb + b

        f_wb = # Your code here to calculate prediction 

f_wb for a training example

        loss =  # Your code here to calculate loss for a 

training example

        loss_sum += loss # equivalent to loss_sum = 

loss_sum + loss

    total_cost = (1 / m) * loss_sum  

    ### END CODE HERE ### 

    return total_cost

```

If you're still stuck, you can check the hints presented

below to figure out how to calculate `z_wb_ij`, `f_wb` and

`cost`.

<details>

 <summary>Hint to

calculate z_wb_ij</summary>

     <code>z_wb_ij = w[j]*X[i][j] </code>

</details>

<details>

<details>

 <summary>Hint to

calculate f_wb</summary>

     $f_{\mathbf{w},b}(\mathbf{x}^{(i)}) =

g(z_{\mathbf{w},b}(\mathbf{x}^{(i)}))$ where g is the

sigmoid function. You can simply call the `sigmoid`

function implemented above.

 <details>

 <summary> 

  More hints to calculate f</summary>

     You can compute f_wb as <code>f_wb

= sigmoid(z_wb) </code>

 </details>

</details>

 <details>

 <summary>Hint to

calculate loss</summary>

     You can use the <a

href="https://numpy.org/doc/stable/reference/generated

/numpy.log.html">np.log function to calculate the log

 <details>

 <summary> 

  More hints to calculate loss</summary>

     You can compute loss as <code>loss

= -y[i] * np.log(f_wb) - (1 - y[i]) * np.log(1 -

f_wb)</code>

 </details>

</details>

</details>

Run the cells below to check your implementation of the compute_cost function
with two different initializations of the parameters

Cost at initial w (zeros): 0.693

Expected Output:

Cost at initial w (zeros) 0.693

w

In [19]:
m, n = X_train.shape

Compute and display cost with w initialized to zeroes

initial_w = np.zeros(n)

initial_b = 0.

cost = compute_cost(X_train, y_train, initial_w, initial_b)

print('Cost at initial w (zeros): {:.3f}'.format(cost))

In [20]:
Compute and display cost with non-zero w

test_w = np.array([0.2, 0.2])

test_b = -24.

cost = compute_cost(X_train, y_train, test_w, test_b)

print('Cost at test w,b: {:.3f}'.format(cost))

Cost at test w,b: 0.218

All tests passed!

Expected Output:

Cost at test w,b 0.218

2.5 Gradient for logistic regression

In this section, you will implement the gradient for logistic regression.

Recall that the gradient descent algorithm is:

where, parameters , are all updated simultaniously

Exercise 3

Please complete the compute_gradient function to compute ,

from equations (2) and (3) below.

• m is the number of training examples in the dataset

• is the model's prediction, while is the actual label

• Note: While this gradient looks identical to the linear regression gradient, the
formula is actually different because linear and logistic regression have
different definitions of .

As before, you can use the sigmoid function that you implemented above and if
you get stuck, you can check out the hints presented after the cell below to help
you with the implementation.

UNIT TESTS

compute_cost_test(compute_cost)

repeat until convergence: {

b := b − α

∂J(w, b)

∂b

w

j

:= w

j

− α

∂J(w, b)

∂w

j

for j := 0..n-1

}

(1)

b w

j

∂J(w,b)

∂w

∂J(w,b)

∂b

∂J(w, b)

∂b

=

1

m

m−1

∑

i=0

(f

w,b

(x

(i)

) − y

(i)

) (2)

∂J(w, b)

∂w

j

=

1

m

m−1

∑

i=0

(f

w,b

(x

(i)

) − y

(i)

)x

(i)

j

(3)

f

w,b

(x

(i)

) y

(i)

f

w,b

(x)

In [21]:
UNQ_C3

Click for hints

• Here's how you can structure the overall implementation for this function

def compute_gradient(X, y, w, b, lambda_=None):

m, n = X.shape

dj_dw = np.zeros(w.shape)

dj_db = 0.

START CODE HERE ###

for i in range(m):

Calculate f_wb (exactly as you did in the

compute_cost function above)

f_wb =

Calculate the gradient for b from this example

dj_db_i = # Your code here to calculate the error

add that to dj_db

dj_db += dj_db_i

get dj_dw for each attribute

for j in range(n):

You code here to calculate the gradient

from the i-th example for j-th attribute

UNQ_C3

GRADED FUNCTION: compute_gradient

def compute_gradient(X, y, w, b, lambda_=None):

"""

 Computes the gradient for logistic regression

 Args:

 X : (ndarray Shape (m,n)) variable such as house size

 y : (array_like Shape (m,1)) actual value

 w : (array_like Shape (n,1)) values of parameters of the model

 b : (scalar) value of parameter of the model

 lambda_: unused placeholder.

 Returns

 dj_dw: (array_like Shape (n,1)) The gradient of the cost w.r.t. the parameters w.

 dj_db: (scalar) The gradient of the cost w.r.t. the parameter b.

 """

m, n = X.shape

dj_dw = np.zeros(w.shape)

dj_db = 0.

START CODE HERE ###

for i in range(m):

f_wb_i = sigmoid(np.dot(X[i],w) + b)

err_i = f_wb_i - y[i]

for j in range(n):

dj_dw[j] = dj_dw[j] + err_i * X[i,j]

dj_db = dj_db + err_i

dj_dw = dj_dw/m

dj_db = dj_db/m

END CODE HERE

return dj_db, dj_dw

dj_dw_ij =

dj_dw[j] += dj_dw_ij

divide dj_db and dj_dw by total number of examples

dj_dw = dj_dw / m

dj_db = dj_db / m

END CODE HERE

return dj_db, dj_dw

If you're still stuck, you can check the hints presented below to figure out how
to calculate f_wb , dj_db_i and dj_dw_ij

Hint to calculate f_wb     Recall that you calculated f_wb in compute_cost
above — for detailed hints on how to calculate each intermediate term, check
out the hints section below that exercise     More hints to calculate

f_wb     You can calculate f_wb as
 for i in range(m):

 # Calculate f_wb (exactly how you did it in

the compute_cost function above)

 z_wb = 0

 # Loop over each feature

 for j in range(n):

 # Add the corresponding term to z_wb

 z_wb_ij = X[i, j] * w[j]

 z_wb += z_wb_ij

 # Add bias term

 z_wb += b

 # Calculate the prediction from the model

 f_wb = sigmoid(z_wb)

Hint to calculate dj_db_i     You can calculate dj_db_i as dj_db_i = f_wb
- y[i] Hint to calculate dj_dw_ij     You can calculate dj_dw_ij as
dj_dw_ij = (f_wb - y[i])* X[i][j]

Run the cells below to check your implementation of the compute_gradient
function with two different initializations of the parameters

dj_db at initial w (zeros):-0.1

dj_dw at initial w (zeros):[-12.00921658929115, -11.262842205513591]

Expected Output:

dj_db at initial w (zeros) -0.1

ddj_dw at initial w (zeros): [-12.00921658929115, -11.262842205513591]

w

In [22]:
Compute and display gradient with w initialized to zeroes

initial_w = np.zeros(n)

initial_b = 0.

dj_db, dj_dw = compute_gradient(X_train, y_train, initial_w, initial_b)

print(f'dj_db at initial w (zeros):{dj_db}')

print(f'dj_dw at initial w (zeros):{dj_dw.tolist()}')

ddj_dw at initial w (zeros): [-12.00921658929115, -11.262842205513591]

dj_db at test_w: -0.5999999999991071

dj_dw at test_w: [-44.831353617873795, -44.37384124953978]

All tests passed!

Expected Output:

dj_db at initial w (zeros) -0.5999999999991071

ddj_dw at initial w (zeros): [-44.8313536178737957, -44.37384124953978]

2.6 Learning parameters using gradient descent

Similar to the previous assignment, you will now find the optimal parameters of a
logistic regression model by using gradient descent.

• You don't need to implement anything for this part. Simply run the cells
below.

• A good way to verify that gradient descent is working correctly is to look

at the value of and check that it is decreasing with each step.

• Assuming you have implemented the gradient and computed the cost
correctly, your value of should never increase, and should converge
to a steady value by the end of the algorithm.

In [23]:
Compute and display cost and gradient with non-zero w

test_w = np.array([0.2, -0.5])

test_b = -24

dj_db, dj_dw = compute_gradient(X_train, y_train, test_w, test_b)

print('dj_db at test_w:', dj_db)

print('dj_dw at test_w:', dj_dw.tolist())

UNIT TESTS

compute_gradient_test(compute_gradient)

J(w, b)

J(w, b)

In [24]:
def gradient_descent(X, y, w_in, b_in, cost_function, gradient_function, alpha

"""

 Performs batch gradient descent to learn theta. Updates theta by taking

 num_iters gradient steps with learning rate alpha

 Args:

 X : (array_like Shape (m, n)

 y : (array_like Shape (m,))

 w_in : (array_like Shape (n,)) Initial values of parameters of the model

 b_in : (scalar) Initial value of parameter of the model

 cost_function: function to compute cost

 alpha : (float) Learning rate

 num_iters : (int) number of iterations to run gradient descent

 lambda_ (scalar, float) regularization constant

 Returns:

 w : (array_like Shape (n,)) Updated values of parameters of the model after

Now let's run the gradient descent algorithm above to learn the parameters for
our dataset.

Note

The code block below takes a couple of minutes to run, especially with a non-
vectorized version. You can reduce the iterations to test your implementation
and iterate faster. If you have time, try running 100,000 iterations for better results.

Iteration 0: Cost 1.01

Iteration 1000: Cost 0.31

Iteration 2000: Cost 0.30

Iteration 3000: Cost 0.30

Iteration 4000: Cost 0.30

Iteration 5000: Cost 0.30

 running gradient descent

 b : (scalar) Updated value of parameter of the model after

 running gradient descent

 """

number of training examples

m = len(X)

An array to store cost J and w's at each iteration primarily for graphing later

J_history = []

w_history = []

for i in range(num_iters):

Calculate the gradient and update the parameters

dj_db, dj_dw = gradient_function(X, y, w_in, b_in, lambda_)

Update Parameters using w, b, alpha and gradient

w_in = w_in - alpha * dj_dw

b_in = b_in - alpha * dj_db

Save cost J at each iteration

if i<100000: # prevent resource exhaustion

cost = cost_function(X, y, w_in, b_in, lambda_)

J_history.append(cost)

Print cost every at intervals 10 times or as many iterations if < 10

if i% math.ceil(num_iters/10) == 0 or i == (num_iters-1):

w_history.append(w_in)

print(f"Iteration {i:4}: Cost {float(J_history[-1]):8.2f} ")

return w_in, b_in, J_history, w_history #return w and J,w history for graphing

In [25]:
np.random.seed(1)

intial_w = 0.01 * (np.random.rand(2).reshape(-1,1) - 0.5)

initial_b = -8

Some gradient descent settings

iterations = 10000

alpha = 0.001

w,b, J_history,_ = gradient_descent(X_train ,y_train, initial_w, initial_b

compute_cost, compute_gradient, alpha,

Iteration 5000: Cost 0.30

Iteration 6000: Cost 0.30

Iteration 7000: Cost 0.30

Iteration 8000: Cost 0.30

Iteration 9000: Cost 0.30

Iteration 9999: Cost 0.30

Expected Output: Cost 0.30, (Click to see details):

With the following settings

np.random.seed(1)

intial_w = 0.01 * (np.random.rand(2).reshape(-1,1) - 0.5)

initial_b = -8

iterations = 10000

alpha = 0.001

#

Iteration 0: Cost 1.01

Iteration 1000: Cost 0.31

Iteration 2000: Cost 0.30

Iteration 3000: Cost 0.30

Iteration 4000: Cost 0.30

Iteration 5000: Cost 0.30

Iteration 6000: Cost 0.30

Iteration 7000: Cost 0.30

Iteration 8000: Cost 0.30

Iteration 9000: Cost 0.30

Iteration 9999: Cost 0.30

2.7 Plotting the decision boundary

We will now use the final parameters from gradient descent to plot the linear fit. If
you implemented the previous parts correctly, you should see the following plot:

We will use a helper function in the utils.py file to create this plot.

We will use a helper function in the utils.py file to create this plot.

2.8 Evaluating logistic regression

We can evaluate the quality of the parameters we have found by seeing how well
the learned model predicts on our training set.

You will implement the predict function below to do this.

Exercise 4

Please complete the predict function to produce 1 or 0 predictions given a
dataset and a learned parameter vector and .

• First you need to compute the prediction from the model
 for every example

▪ You've implemented this before in the parts above
• We interpret the output of the model () as the probability that

given and parameterized by .

• Therefore, to get a final prediction (or) from the logistic
regression model, you can use the following heuristic -

if , predict

if , predict

If you get stuck, you can check out the hints presented after the cell below to help
you with the implementation.

In [26]:
plot_decision_boundary(w, b, X_train, y_train)

w b

f(x

(i)

) = g(w ⋅ x

(i)

)

f(x

(i)

) y

(i)

= 1

x

(i)

w

y

(i)

= 0 y

(i)

= 1

f(x

(i)

) >= 0.5 y

(i)

= 1

f(x

(i)

) < 0.5 y

(i)

= 0

In [29]:
UNQ_C4

GRADED FUNCTION: predict

def predict(X, w, b):

Click for hints

• Here's how you can structure the overall implementation for this function

def predict(X, w, b):

number of training examples

m, n = X.shape

p = np.zeros(m)

START CODE HERE ###

Loop over each example

for i in range(m):

Calculate f_wb (exactly how you did it in the

compute_cost function above)

using a couple of lines of code

f_wb =

Calculate the prediction for that training

example

p[i] = # Your code here to calculate the

prediction based on f_wb

def predict(X, w, b):

"""

 Predict whether the label is 0 or 1 using learned logistic

 regression parameters w

 Args:

 X : (ndarray Shape (m, n))

 w : (array_like Shape (n,)) Parameters of the model

 b : (scalar, float) Parameter of the model

 Returns:

 p: (ndarray (m,1))

 The predictions for X using a threshold at 0.5

 """

number of training examples

m, n = X.shape

p = np.zeros(m)

START CODE HERE ###

Loop over each example

for i in range(m):

z_wb = np.dot(X[i],w)

Loop over each feature

for j in range(n):

Add the corresponding term to z_wb

z_wb += 0

Add bias term

z_wb += b

Calculate the prediction for this example

f_wb = sigmoid(z_wb)

Apply the threshold

p[i] = 1 if f_wb>0.5 else 0

END CODE HERE ###

return p

prediction based on f_wb

END CODE HERE ###

return p

If you're still stuck, you can check the hints presented below to figure out how
to calculate f_wb and p[i]

Hint to calculate f_wb     Recall that you calculated f_wb in compute_cost
above — for detailed hints on how to calculate each intermediate term, check
out the hints section below that exercise     More hints to calculate

f_wb     You can calculate f_wb as
 for i in range(m):

 # Calculate f_wb (exactly how you did it in

the compute_cost function above)

 z_wb = 0

 # Loop over each feature

 for j in range(n):

 # Add the corresponding term to z_wb

 z_wb_ij = X[i, j] * w[j]

 z_wb += z_wb_ij

 # Add bias term

 z_wb += b

 # Calculate the prediction from the model

 f_wb = sigmoid(z_wb)

Hint to calculate p[i]     As an example, if you'd like to say x = 1 if y is less
than 3 and 0 otherwise, you can express it in code as x = y < 3 . Now do
the same for p[i] = 1 if f_wb >= 0.5 and 0 otherwise.     More hints to

calculate p[i]     You can compute p[i] as p[i] = f_wb >= 0.5

Once you have completed the function predict , let's run the code below to
report the training accuracy of your classifier by computing the percentage of
examples it got correct.

Output of predict: shape (4,), value [0. 1. 1. 1.]

All tests passed!

Expected output

Output of predict: shape (4,),value [0. 1. 1. 1.]

In [30]:
Test your predict code

np.random.seed(1)

tmp_w = np.random.randn(2)

tmp_b = 0.3

tmp_X = np.random.randn(4, 2) - 0.5

tmp_p = predict(tmp_X, tmp_w, tmp_b)

print(f'Output of predict: shape {tmp_p.shape}, value {tmp_p}')

UNIT TESTS

predict_test(predict)

Now let's use this to compute the accuracy on the training set

Train Accuracy: 92.000000

Train Accuracy (approx): 92.00

3 - Regularized Logistic Regression
In this part of the exercise, you will implement regularized logistic regression to
predict whether microchips from a fabrication plant passes quality assurance (QA).
During QA, each microchip goes through various tests to ensure it is functioning
correctly.

3.1 Problem Statement

Suppose you are the product manager of the factory and you have the test results
for some microchips on two different tests.

• From these two tests, you would like to determine whether the microchips
should be accepted or rejected.

• To help you make the decision, you have a dataset of test results on past
microchips, from which you can build a logistic regression model.

3.2 Loading and visualizing the data

Similar to previous parts of this exercise, let's start by loading the dataset for this
task and visualizing it.

• The load_dataset() function shown below loads the data into variables
X_train and y_train
▪ X_train contains the test results for the microchips from two tests
▪ y_train contains the results of the QA

◦ y_train = 1 if the microchip was accepted
◦ y_train = 0 if the microchip was rejected

▪ Both X_train and y_train are numpy arrays.

View the variables

The code below prints the first five values of X_train and y_train and the
type of the variables.

In [31]:
#Compute accuracy on our training set

p = predict(X_train, w,b)

print('Train Accuracy: %f'%(np.mean(p == y_train) * 100))

In [32]:
load dataset

X_train, y_train = load_data("data/ex2data2.txt")

type of the variables.

X_train: [[0.051267 0.69956]

 [-0.092742 0.68494]

 [-0.21371 0.69225]

 [-0.375 0.50219]

 [-0.51325 0.46564]]

Type of X_train: <class 'numpy.ndarray'>

y_train: [1. 1. 1. 1. 1.]

Type of y_train: <class 'numpy.ndarray'>

Check the dimensions of your variables

Another useful way to get familiar with your data is to view its dimensions. Let's
print the shape of X_train and y_train and see how many training examples
we have in our dataset.

The shape of X_train is: (118, 2)

The shape of y_train is: (118,)

We have m = 118 training examples

Visualize your data

The helper function plot_data (from utils.py) is used to generate a figure
like Figure 3, where the axes are the two test scores, and the positive (y = 1,
accepted) and negative (y = 0, rejected) examples are shown with different
markers.

In [33]:
print X_train

print("X_train:", X_train[:5])

print("Type of X_train:",type(X_train))

print y_train

print("y_train:", y_train[:5])

print("Type of y_train:",type(y_train))

In [34]:
print ('The shape of X_train is: ' + str(X_train.shape))

print ('The shape of y_train is: ' + str(y_train.shape))

print ('We have m = %d training examples' % (len(y_train)))

Figure 3 shows that our dataset cannot be separated into positive and negative
examples by a straight-line through the plot. Therefore, a straight forward
application of logistic regression will not perform well on this dataset since logistic
regression will only be able to find a linear decision boundary.

3.3 Feature mapping

One way to fit the data better is to create more features from each data point. In
the provided function map_feature , we will map the features into all polynomial
terms of and up to the sixth power.

As a result of this mapping, our vector of two features (the scores on two QA tests)

In [35]:
Plot examples

plot_data(X_train, y_train[:], pos_label="Accepted", neg_label="Rejected")

Set the y-axis label

plt.ylabel('Microchip Test 2')

Set the x-axis label

plt.xlabel('Microchip Test 1')

plt.legend(loc="upper right")

plt.show()

x

1

x

2

map_feature(x) =

⎡

⎢
⎣

x

1

x

2

x

2

1

x

1

x

2

x

2

2

x

3

1

⋮

x

1

x

5

2

x

6

2

⎤

⎥
⎦

has been transformed into a 27-dimensional vector.

• A logistic regression classifier trained on this higher-dimension feature vector
will have a more complex decision boundary and will be nonlinear when
drawn in our 2-dimensional plot.

• We have provided the map_feature function for you in utils.py.

Original shape of data: (118, 2)

Shape after feature mapping: (118, 27)

Let's also print the first elements of X_train and mapped_X to see the
tranformation.

X_train[0]: [0.051267 0.69956]

mapped X_train[0]: [5.12670000e-02 6.99560000e-01 2.62830529e-03 3.58643425

e-02

 4.89384194e-01 1.34745327e-04 1.83865725e-03 2.50892595e-02

 3.42353606e-01 6.90798869e-06 9.42624411e-05 1.28625106e-03

 1.75514423e-02 2.39496889e-01 3.54151856e-07 4.83255257e-06

 6.59422333e-05 8.99809795e-04 1.22782870e-02 1.67542444e-01

 1.81563032e-08 2.47750473e-07 3.38066048e-06 4.61305487e-05

 6.29470940e-04 8.58939846e-03 1.17205992e-01]

While the feature mapping allows us to build a more expressive classifier, it is also
more susceptible to overfitting. In the next parts of the exercise, you will
implement regularized logistic regression to fit the data and also see for yourself
how regularization can help combat the overfitting problem.

3.4 Cost function for regularized logistic regression

In this part, you will implement the cost function for regularized logistic regression.

Recall that for regularized logistic regression, the cost function is of the form

Compare this to the cost function without regularization (which you implemented
above), which is of the form

The difference is the regularization term, which is

In [36]:
print("Original shape of data:", X_train.shape)

mapped_X = map_feature(X_train[:, 0], X_train[:, 1])

print("Shape after feature mapping:", mapped_X.shape)

In [37]:
print("X_train[0]:", X_train[0])

print("mapped X_train[0]:", mapped_X[0])

J(w, b) =

1

m

m−1

∑

i=0

[−y

(i)

log (f

w,b

(x

(i)

)) − (1 − y

(i)

) log (1 − f

w,b

(x

(i)

))] +

J(w. b) =

1

m

m−1

∑

i=0

[(−y

(i)

log (f

w,b

(x

(i)

)) − (1 − y

(i)

) log (1 − f

w,b

(x

(i)

))]

λ

n−1

∑

2

Note that the parameter is not regularized.

Exercise 5

Please complete the compute_cost_reg function below to calculate the
following term for each element in

The starter code then adds this to the cost without regularization (which you
computed above in compute_cost) to calculate the cost with regulatization.

If you get stuck, you can check out the hints presented after the cell below to help
you with the implementation.

Click for hints

• Here's how you can structure the overall implementation for this function

def compute_cost_reg(X, y, w, b, lambda_ = 1):

λ

2m

∑

j=0

w

2

j

b

w

λ

2m

n−1

∑

j=0

w

2

j

In [51]:
UNQ_C5

def compute_cost_reg(X, y, w, b, lambda_ = 1):

"""

 Computes the cost over all examples

 Args:

 X : (array_like Shape (m,n)) data, m examples by n features

 y : (array_like Shape (m,)) target value

 w : (array_like Shape (n,)) Values of parameters of the model

 b : (array_like Shape (n,)) Values of bias parameter of the model

 lambda_ : (scalar, float) Controls amount of regularization

 Returns:

 total_cost: (scalar) cost

 """

m, n = X.shape

Calls the compute_cost function that you implemented above

cost_without_reg = compute_cost(X, y, w, b)

You need to calculate this value

reg_cost = 0.

START CODE HERE

reg_cost = sum(np.square(w))

END CODE HERE ###

Add the regularization cost to get the total cost

total_cost = cost_without_reg + (lambda_/(2 * m)) * reg_cost

return total_cost

m, n = X.shape

Calls the compute_cost function that you

implemented above

cost_without_reg = compute_cost(X, y, w, b)

You need to calculate this value

reg_cost = 0.

START CODE HERE

for j in range(n):

reg_cost_j = # Your code here to calculate the

cost from w[j]

reg_cost = reg_cost + reg_cost_j

END CODE HERE ###

Add the regularization cost to get the total cost

total_cost = cost_without_reg + (lambda_/(2 * m)) *

reg_cost

return total_cost

If you're still stuck, you can check the hints presented below to figure out how
to calculate reg_cost_j

Hint to calculate reg_cost_j     You can use calculate reg_cost_j as
reg_cost_j = w[j]**2

Run the cell below to check your implementation of the compute_cost_reg
function.

Regularized cost : 0.6618252552483948

All tests passed!

Expected Output:

Regularized cost : 0.6618252552483948

3.5 Gradient for regularized logistic regression

In this section, you will implement the gradient for regularized logistic regression.

In [52]:
X_mapped = map_feature(X_train[:, 0], X_train[:, 1])

np.random.seed(1)

initial_w = np.random.rand(X_mapped.shape[1]) - 0.5

initial_b = 0.5

lambda_ = 0.5

cost = compute_cost_reg(X_mapped, y_train, initial_w, initial_b, lambda_)

print("Regularized cost :", cost)

UNIT TEST

compute_cost_reg_test(compute_cost_reg)

The gradient of the regularized cost function has two components. The first,
 is a scalar, the other is a vector with the same shape as the parameters ,

where the element is defined as follows:

Compare this to the gradient of the cost function without regularization (which
you implemented above), which is of the form

As you can see, is the same, the difference is the following term in ,

which is

Exercise 6

Please complete the compute_gradient_reg function below to modify the code
below to calculate the following term

The starter code will add this term to the returned from

compute_gradient above to get the gradient for the regularized cost function.

If you get stuck, you can check out the hints presented after the cell below to help
you with the implementation.

∂J(w,b)

∂b

w

j

th

∂J(w, b)

∂b

=

1

m

m−1

∑

i=0

(f

w,b

(x

(i)

) − y

(i)

)

∂J(w, b)

∂w

j

= (

1

m

m−1

∑

i=0

(f

w,b

(x

(i)

) − y

(i)

)x

(i)

j

) +

λ

m

w

j

for j = 0.. . (n − 1)

∂J(w, b)

∂b

=

1

m

m−1

∑

i=0

(f

w,b

(x

(i)

) − y

(i)

) (2)

∂J(w, b)

∂w

j

=

1

m

m−1

∑

i=0

(f

w,b

(x

(i)

) − y

(i)

)x

(i)

j

(3)

∂J(w,b)

∂b

∂J(w,b)

∂w

λ

m

w

j

for j = 0.. . (n − 1)

λ

m

w

j

for j = 0.. . (n − 1)

∂J(w,b)

∂w

In [56]:
UNQ_C6

def compute_gradient_reg(X, y, w, b, lambda_ = 1):

"""

 Computes the gradient for linear regression

 Args:

 X : (ndarray Shape (m,n)) variable such as house size

 y : (ndarray Shape (m,)) actual value

 w : (ndarray Shape (n,)) values of parameters of the model

 b : (scalar) value of parameter of the model

 lambda_ : (scalar,float) regularization constant

 Returns

 dj_db: (scalar) The gradient of the cost w.r.t. the parameter b.

Click for hints

• Here's how you can structure the overall implementation for this function

def compute_gradient_reg(X, y, w, b, lambda_ = 1):

m, n = X.shape

dj_db, dj_dw = compute_gradient(X, y, w, b)

START CODE HERE ###

Loop over the elements of w

for j in range(n):

dj_dw_j_reg = # Your code here to calculate the

regularization term for dj_dw[j]

Add the regularization term to the correspoding

element of dj_dw

dj_dw[j] = dj_dw[j] + dj_dw_j_reg

END CODE HERE ###

return dj_db, dj_dw

If you're still stuck, you can check the hints presented below to figure out how
to calculate dj_dw_j_reg

Hint to calculate dj_dw_j_reg     You can use calculate dj_dw_j_reg as
dj_dw_j_reg = (lambda_ / m) * w[j]

Run the cell below to check your implementation of the compute_gradient_reg
function.

 dj_db: (scalar) The gradient of the cost w.r.t. the parameter b.

 dj_dw: (ndarray Shape (n,)) The gradient of the cost w.r.t. the parameters w.

 """

m, n = X.shape

dj_db, dj_dw = compute_gradient(X, y, w, b)

START CODE HERE ###

for j in range(n):

dj_dw[j] = dj_dw[j] + (lambda_/m) * w[j]

END CODE HERE ###

return dj_db, dj_dw

In [57]:
X_mapped = map_feature(X_train[:, 0], X_train[:, 1])

np.random.seed(1)

initial_w = np.random.rand(X_mapped.shape[1]) - 0.5

initial_b = 0.5

lambda_ = 0.5

dj_db, dj_dw = compute_gradient_reg(X_mapped, y_train, initial_w, initial_b

print(f"dj_db: {dj_db}",)

print(f"First few elements of regularized dj_dw:\n {dj_dw[:4].tolist()}",

UNIT TESTS

