
Optional Lab: Feature Engineering and Polynomial
Regression

Goals

In this lab you will:

• explore feature engineering and polynomial regression which allows you to use the machinery of

linear regression to fit very complicated, even very non-linear functions.

Tools

You will utilize the function developed in previous labs as well as matplotlib and NumPy.

In [1]:

Feature Engineering and Polynomial Regression
Overview
Out of the box, linear regression provides a means of building models of the form:

What if your features/data are non-linear or are combinations of features? For example, Housing prices

do not tend to be linear with living area but penalize very small or very large houses resulting in the

curves shown in the graphic above. How can we use the machinery of linear regression to fit this curve?

Recall, the 'machinery' we have is the ability to modify the parameters , in (1) to 'fit' the equation to

the training data. However, no amount of adjusting of , in (1) will achieve a fit to a non-linear curve.

= + +. . . + + ���,� �0�0 �1�1 ��−1��−1 (1)

� �

� �

Polynomial Features

Above we were considering a scenario where the data was non-linear. Let's try using what we know so

far to fit a non-linear curve. We'll start with a simple quadratic:

You're familiar with all the routines we're using. They are available in the lab_utils.py file for review. We'll

use np.c_[..] (https://numpy.org/doc/stable/reference/generated/numpy.c_.html) which is a NumPy

routine to concatenate along the column boundary.

� = 1 + �2

import numpy as np
import matplotlib.pyplot as plt
from lab_utils_multi import zscore_normalize_features, run_gradient_descent_feng
np.set_printoptions(precision=2) # reduced display precision on numpy arrays

1
2
3
4
5

http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab04_FeatEng_PolyReg_Soln.ipynb#Optional-Lab:-Feature-Engineering-and-Polynomial-Regression
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab04_FeatEng_PolyReg_Soln.ipynb#Optional-Lab:-Feature-Engineering-and-Polynomial-Regression
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab04_FeatEng_PolyReg_Soln.ipynb#Goals
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab04_FeatEng_PolyReg_Soln.ipynb#Goals
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab04_FeatEng_PolyReg_Soln.ipynb#Tools
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab04_FeatEng_PolyReg_Soln.ipynb#Tools
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab04_FeatEng_PolyReg_Soln.ipynb#Feature-Engineering-and-Polynomial-Regression-Overview
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab04_FeatEng_PolyReg_Soln.ipynb#Feature-Engineering-and-Polynomial-Regression-Overview
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab04_FeatEng_PolyReg_Soln.ipynb#Polynomial-Features
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab04_FeatEng_PolyReg_Soln.ipynb#Polynomial-Features
https://numpy.org/doc/stable/reference/generated/numpy.c_.html
https://numpy.org/doc/stable/reference/generated/numpy.c_.html
https://numpy.org/doc/stable/reference/generated/numpy.c_.html
https://numpy.org/doc/stable/reference/generated/numpy.c_.html
https://numpy.org/doc/stable/reference/generated/numpy.c_.html
https://numpy.org/doc/stable/reference/generated/numpy.c_.html
https://numpy.org/doc/stable/reference/generated/numpy.c_.html

In [2]:

Well, as expected, not a great fit. What is needed is something like , or a polynomial

feature. To accomplish this, you can modify the input data to engineer the needed features. If you swap

the original data with a version that squares the value, then you can achieve . Let's try

it. Swap X for X**2 below:

� = + ��0�
2
0

� � = + ��0�
2
0

In [3]:

Iteration 0, Cost: 1.65756e+03
Iteration 100, Cost: 6.94549e+02
Iteration 200, Cost: 5.88475e+02
Iteration 300, Cost: 5.26414e+02
Iteration 400, Cost: 4.90103e+02
Iteration 500, Cost: 4.68858e+02
Iteration 600, Cost: 4.56428e+02
Iteration 700, Cost: 4.49155e+02
Iteration 800, Cost: 4.44900e+02
Iteration 900, Cost: 4.42411e+02
w,b found by gradient descent: w: [18.7], b: -52.0834

create target data
x = np.arange(0, 20, 1)
y = 1 + x**2
X = x.reshape(-1, 1)

model_w,model_b = run_gradient_descent_feng(X,y,iterations=1000, alpha = 1e-2)

plt.scatter(x, y, marker='x', c='r', label="Actual Value"); plt.title("no feature engineering"
plt.plot(x,X@model_w + model_b, label="Predicted Value"); plt.xlabel("X"); plt.ylabel

create target data
x = np.arange(0, 20, 1)
y = 1 + x**2

Engineer features
X = x**2 #<-- added engineered feature

1
2
3
4
5
6
7
8
9

10

1
2
3
4
5
6
7

In [3]:

Great! near perfect fit. Notice the values of and b printed right above the graph: w,b found by

gradient descent: w: [1.], b: 0.0490 . Gradient descent modified our initial values of to be

(1.0,0.049) or a model of , very close to our target of . If you ran it

longer, it could be a better match.

�

�, �
� = 1 ∗ + 0.049�20 � = 1 ∗ + 1�20

Selecting Features

Above, we knew that an term was required. It may not always be obvious which features are

required. One could add a variety of potential features to try and find the most useful. For example, what

if we had instead tried : ?

Run the next cells.

�2

� = + + + ��0�0 �1�
2
1 �2�

3
2

In [4]:

Iteration 0, Cost: 1.41576e+04
Iteration 1000, Cost: 1.98104e+03
Iteration 2000, Cost: 9.65496e+02
Iteration 3000, Cost: 8.78850e+02
Iteration 4000, Cost: 8.69524e+02
Iteration 5000, Cost: 8.66644e+02
Iteration 6000, Cost: 8.64312e+02
Iteration 7000, Cost: 8.62037e+02
Iteration 8000, Cost: 8.59778e+02
Iteration 9000, Cost: 8.57531e+02
w,b found by gradient descent: w: [14.71], b: -0.3834

X = X.reshape(-1, 1) #X should be a 2-D Matrix
model_w,model_b = run_gradient_descent_feng(X, y, iterations=10000, alpha = 1e-5)

plt.scatter(x, y, marker='x', c='r', label="Actual Value"); plt.title("Added x**2 feature"
plt.plot(x, np.dot(X,model_w) + model_b, label="Predicted Value"); plt.xlabel("x"

create target data
x = np.arange(0, 20, 1)
y = x**2

engineer features .
X = np.c_[x, x**2, x**3] #<-- added engineered feature

1
2
3
4
5
6

1
2
3
4
5
6
7

http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab04_FeatEng_PolyReg_Soln.ipynb#Selecting-Features
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab04_FeatEng_PolyReg_Soln.ipynb#Selecting-Features

In [5]:

Note the value of , [0.08 0.54 0.03] and b is 0.0106 .This implies the model after fitting/training

is:

Gradient descent has emphasized the data that is the best fit to the data by increasing the term

relative to the others. If you were to run for a very long time, it would continue to reduce the impact of the

other terms.

Gradient descent is picking the 'correct' features for us by emphasizing its associated

parameter

Let's review this idea:

• Intially, the features were re-scaled so they are comparable to each other

• less weight value implies less important/correct feature, and in extreme, when the weight becomes

zero or very close to zero, the associated feature is not useful in fitting the model to the data.

• above, after fitting, the weight associated with the feature is much larger than the weights for or

 as it is the most useful in fitting the data.

�

0.08� + 0.54 + 0.03 + 0.0106�2 �3

�2 �1

�2 �

�3

An Alternate View

Above, polynomial features were chosen based on how well they matched the target data. Another way

to think about this is to note that we are still using linear regression once we have created new features.

Given that, the best features will be linear relative to the target. This is best understood with an example.

Iteration 0, Cost: 1.14029e+03
Iteration 1000, Cost: 3.28539e+02
Iteration 2000, Cost: 2.80443e+02
Iteration 3000, Cost: 2.39389e+02
Iteration 4000, Cost: 2.04344e+02
Iteration 5000, Cost: 1.74430e+02
Iteration 6000, Cost: 1.48896e+02
Iteration 7000, Cost: 1.27100e+02
Iteration 8000, Cost: 1.08495e+02
Iteration 9000, Cost: 9.26132e+01
w,b found by gradient descent: w: [0.08 0.54 0.03], b: 0.0106

model_w,model_b = run_gradient_descent_feng(X, y, iterations=10000, alpha=1e-7)

plt.scatter(x, y, marker='x', c='r', label="Actual Value"); plt.title("x, x**2, x**3 features"
plt.plot(x, X@model_w + model_b, label="Predicted Value"); plt.xlabel("x"); plt.ylabel

1
2
3
4
5

http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab04_FeatEng_PolyReg_Soln.ipynb#An-Alternate-View
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab04_FeatEng_PolyReg_Soln.ipynb#An-Alternate-View

In [6]:

In [7]:

Above, it is clear that the feature mapped against the target value is linear. Linear regression can

then easily generate a model using that feature.

�2 �

Scaling features

As described in the last lab, if the data set has features with significantly different scales, one should

apply feature scaling to speed gradient descent. In the example above, there is , and which will

naturally have very different scales. Let's apply Z-score normalization to our example.

� �2 �3

In [8]:

Now we can try again with a more aggressive value of alpha:

Peak to Peak range by column in Raw X:[19 361 6859]
Peak to Peak range by column in Normalized X:[3.3 3.18 3.28]

create target data
x = np.arange(0, 20, 1)
y = x**2

engineer features .
X = np.c_[x, x**2, x**3] #<-- added engineered feature
X_features = ['x','x^2','x^3']

fig,ax=plt.subplots(1, 3, figsize=(12, 3), sharey=True)
for i in range(len(ax)):

ax[i].scatter(X[:,i],y)
ax[i].set_xlabel(X_features[i])

ax[0].set_ylabel("y")
plt.show()

create target data
x = np.arange(0,20,1)
X = np.c_[x, x**2, x**3]
print(f"Peak to Peak range by column in Raw X:{np.ptp(X,axis=0)}")

add mean_normalization
X = zscore_normalize_features(X)
print(f"Peak to Peak range by column in Normalized X:{np.ptp(X,axis=0)}")

1
2
3
4
5
6
7
8

1
2
3
4
5
6
7

1
2
3
4
5
6
7
8
9

http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab04_FeatEng_PolyReg_Soln.ipynb#Scaling-features
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab04_FeatEng_PolyReg_Soln.ipynb#Scaling-features

In [9]:

Feature scaling allows this to converge much faster.

Note again the values of . The term, which is the term is the most emphasized. Gradient

descent has all but eliminated the term.

� �1 �2

�3

Complex Functions

With feature engineering, even quite complex functions can be modeled:

Iteration 0, Cost: 9.42147e+03
Iteration 10000, Cost: 3.90938e-01
Iteration 20000, Cost: 2.78389e-02
Iteration 30000, Cost: 1.98242e-03
Iteration 40000, Cost: 1.41169e-04
Iteration 50000, Cost: 1.00527e-05
Iteration 60000, Cost: 7.15855e-07
Iteration 70000, Cost: 5.09763e-08
Iteration 80000, Cost: 3.63004e-09
Iteration 90000, Cost: 2.58497e-10
w,b found by gradient descent: w: [5.27e-05 1.13e+02 8.43e-05], b: 123.5000

x = np.arange(0,20,1)
y = x**2

X = np.c_[x, x**2, x**3]
X = zscore_normalize_features(X)

model_w, model_b = run_gradient_descent_feng(X, y, iterations=100000, alpha=1e-1)

plt.scatter(x, y, marker='x', c='r', label="Actual Value"); plt.title("Normalized x x**2, x**3 featu
plt.plot(x,X@model_w + model_b, label="Predicted Value"); plt.xlabel("x"); plt.ylabel

1
2
3
4
5
6
7
8
9

10
11

http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab04_FeatEng_PolyReg_Soln.ipynb#Complex-Functions
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab04_FeatEng_PolyReg_Soln.ipynb#Complex-Functions

In [*]:

Congratulations!

In this lab you:

• learned how linear regression can model complex, even highly non-linear functions using feature

engineering

• recognized that it is important to apply feature scaling when doing feature engineering

In []:

Iteration 0, Cost: 2.24887e-01
Iteration 100000, Cost: 2.31061e-02
Iteration 200000, Cost: 1.83619e-02
Iteration 300000, Cost: 1.47950e-02

x = np.arange(0,20,1)
y = np.cos(x/2)

X = np.c_[x, x**2, x**3,x**4, x**5, x**6, x**7, x**8, x**9, x**10, x**11, x**12,
X = zscore_normalize_features(X)

model_w,model_b = run_gradient_descent_feng(X, y, iterations=1000000, alpha = 1e-1

plt.scatter(x, y, marker='x', c='r', label="Actual Value"); plt.title("Normalized x x**2, x**3 featu
plt.plot(x,X@model_w + model_b, label="Predicted Value"); plt.xlabel("x"); plt.ylabel

1
2
3
4
5
6
7
8
9

10
11

1

http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab04_FeatEng_PolyReg_Soln.ipynb#Congratulations!
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab04_FeatEng_PolyReg_Soln.ipynb#Congratulations!

