
Optional Lab: Feature Engineering and Polynomial
Regression

Goals

In this lab you will:

• explore feature engineering and polynomial regression which allows you to use the machinery of

linear regression to fit very complicated, even very non-linear functions.

Tools

You will utilize the function developed in previous labs as well as matplotlib and NumPy.

In [1]:

Feature Engineering and Polynomial Regression
Overview
Out of the box, linear regression provides a means of building models of the form:

What if your features/data are non-linear or are combinations of features? For example, Housing prices

do not tend to be linear with living area but penalize very small or very large houses resulting in the

curves shown in the graphic above. How can we use the machinery of linear regression to fit this curve?

Recall, the 'machinery' we have is the ability to modify the parameters ,  in (1) to 'fit' the equation to

the training data. However, no amount of adjusting of ,  in (1) will achieve a fit to a non-linear curve.
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Polynomial Features

Above we were considering a scenario where the data was non-linear. Let's try using what we know so

far to fit a non-linear curve. We'll start with a simple quadratic: 

You're familiar with all the routines we're using. They are available in the lab_utils.py file for review. We'll

use np.c_[..]  (https://numpy.org/doc/stable/reference/generated/numpy.c_.html) which is a NumPy

routine to concatenate along the column boundary.

� = 1 + �2

import numpy as np
import matplotlib.pyplot as plt
from lab_utils_multi import zscore_normalize_features, run_gradient_descent_feng
np.set_printoptions(precision=2)  # reduced display precision on numpy arrays
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In [2]:

Well, as expected, not a great fit. What is needed is something like , or a polynomial

feature. To accomplish this, you can modify the input data to engineer the needed features. If you swap

the original data with a version that squares the  value, then you can achieve . Let's try

it. Swap X  for X**2  below:
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In [3]:

Iteration         0, Cost: 1.65756e+03
Iteration       100, Cost: 6.94549e+02
Iteration       200, Cost: 5.88475e+02
Iteration       300, Cost: 5.26414e+02
Iteration       400, Cost: 4.90103e+02
Iteration       500, Cost: 4.68858e+02
Iteration       600, Cost: 4.56428e+02
Iteration       700, Cost: 4.49155e+02
Iteration       800, Cost: 4.44900e+02
Iteration       900, Cost: 4.42411e+02
w,b found by gradient descent: w: [18.7], b: -52.0834

# create target data
x = np.arange(0, 20, 1)
y = 1 + x**2
X = x.reshape(-1, 1)

model_w,model_b = run_gradient_descent_feng(X,y,iterations=1000, alpha = 1e-2)

plt.scatter(x, y, marker='x', c='r', label="Actual Value"); plt.title("no feature engineering"
plt.plot(x,X@model_w + model_b, label="Predicted Value");  plt.xlabel("X"); plt.ylabel

# create target data
x = np.arange(0, 20, 1)
y = 1 + x**2

# Engineer features 
X = x**2 #<-- added engineered feature
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In [3]:

Great! near perfect fit. Notice the values of  and b printed right above the graph: w,b found by 

gradient descent: w: [1.], b: 0.0490 . Gradient descent modified our initial values of  to be

(1.0,0.049) or a model of , very close to our target of . If you ran it

longer, it could be a better match.

�
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Selecting Features

Above, we knew that an  term was required. It may not always be obvious which features are

required. One could add a variety of potential features to try and find the most useful. For example, what

if we had instead tried :  ?

Run the next cells.
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In [4]:

Iteration         0, Cost: 1.41576e+04
Iteration      1000, Cost: 1.98104e+03
Iteration      2000, Cost: 9.65496e+02
Iteration      3000, Cost: 8.78850e+02
Iteration      4000, Cost: 8.69524e+02
Iteration      5000, Cost: 8.66644e+02
Iteration      6000, Cost: 8.64312e+02
Iteration      7000, Cost: 8.62037e+02
Iteration      8000, Cost: 8.59778e+02
Iteration      9000, Cost: 8.57531e+02
w,b found by gradient descent: w: [14.71], b: -0.3834

X = X.reshape(-1, 1)  #X should be a 2-D Matrix
model_w,model_b = run_gradient_descent_feng(X, y, iterations=10000, alpha = 1e-5)

plt.scatter(x, y, marker='x', c='r', label="Actual Value"); plt.title("Added x**2 feature"
plt.plot(x, np.dot(X,model_w) + model_b, label="Predicted Value"); plt.xlabel("x"

# create target data
x = np.arange(0, 20, 1)
y = x**2

# engineer features .
X = np.c_[x, x**2, x**3]   #<-- added engineered feature
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In [5]:

Note the value of , [0.08 0.54 0.03]  and b is 0.0106 .This implies the model after fitting/training

is:

Gradient descent has emphasized the data that is the best fit to the  data by increasing the  term

relative to the others. If you were to run for a very long time, it would continue to reduce the impact of the

other terms.

Gradient descent is picking the 'correct' features for us by emphasizing its associated

parameter

Let's review this idea:

• Intially, the features were re-scaled so they are comparable to each other

• less weight value implies less important/correct feature, and in extreme, when the weight becomes

zero or very close to zero, the associated feature is not useful in fitting the model to the data.

• above, after fitting, the weight associated with the  feature is much larger than the weights for  or

 as it is the most useful in fitting the data.

�
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�2 �1

�2 �

�3

An Alternate View

Above, polynomial features were chosen based on how well they matched the target data. Another way

to think about this is to note that we are still using linear regression once we have created new features.

Given that, the best features will be linear relative to the target. This is best understood with an example.

Iteration         0, Cost: 1.14029e+03
Iteration      1000, Cost: 3.28539e+02
Iteration      2000, Cost: 2.80443e+02
Iteration      3000, Cost: 2.39389e+02
Iteration      4000, Cost: 2.04344e+02
Iteration      5000, Cost: 1.74430e+02
Iteration      6000, Cost: 1.48896e+02
Iteration      7000, Cost: 1.27100e+02
Iteration      8000, Cost: 1.08495e+02
Iteration      9000, Cost: 9.26132e+01
w,b found by gradient descent: w: [0.08 0.54 0.03], b: 0.0106

model_w,model_b = run_gradient_descent_feng(X, y, iterations=10000, alpha=1e-7)

plt.scatter(x, y, marker='x', c='r', label="Actual Value"); plt.title("x, x**2, x**3 features"
plt.plot(x, X@model_w + model_b, label="Predicted Value"); plt.xlabel("x"); plt.ylabel
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In [6]:

In [7]:

Above, it is clear that the  feature mapped against the target value  is linear. Linear regression can

then easily generate a model using that feature.

�2 �

Scaling features

As described in the last lab, if the data set has features with significantly different scales, one should

apply feature scaling to speed gradient descent. In the example above, there is ,  and  which will

naturally have very different scales. Let's apply Z-score normalization to our example.

� �2 �3

In [8]:

Now we can try again with a more aggressive value of alpha:

Peak to Peak range by column in Raw        X:[  19  361 6859]
Peak to Peak range by column in Normalized X:[3.3  3.18 3.28]

# create target data
x = np.arange(0, 20, 1)
y = x**2

# engineer features .
X = np.c_[x, x**2, x**3]   #<-- added engineered feature
X_features = ['x','x^2','x^3']

fig,ax=plt.subplots(1, 3, figsize=(12, 3), sharey=True)
for i in range(len(ax)):

ax[i].scatter(X[:,i],y)
ax[i].set_xlabel(X_features[i])

ax[0].set_ylabel("y")
plt.show()

# create target data
x = np.arange(0,20,1)
X = np.c_[x, x**2, x**3]
print(f"Peak to Peak range by column in Raw        X:{np.ptp(X,axis=0)}")

# add mean_normalization 
X = zscore_normalize_features(X)     
print(f"Peak to Peak range by column in Normalized X:{np.ptp(X,axis=0)}")
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In [9]:

Feature scaling allows this to converge much faster.

Note again the values of . The  term, which is the  term is the most emphasized. Gradient

descent has all but eliminated the  term.

� �1 �2

�3

Complex Functions

With feature engineering, even quite complex functions can be modeled:

Iteration         0, Cost: 9.42147e+03
Iteration     10000, Cost: 3.90938e-01
Iteration     20000, Cost: 2.78389e-02
Iteration     30000, Cost: 1.98242e-03
Iteration     40000, Cost: 1.41169e-04
Iteration     50000, Cost: 1.00527e-05
Iteration     60000, Cost: 7.15855e-07
Iteration     70000, Cost: 5.09763e-08
Iteration     80000, Cost: 3.63004e-09
Iteration     90000, Cost: 2.58497e-10
w,b found by gradient descent: w: [5.27e-05 1.13e+02 8.43e-05], b: 123.5000

x = np.arange(0,20,1)
y = x**2

X = np.c_[x, x**2, x**3]
X = zscore_normalize_features(X) 

model_w, model_b = run_gradient_descent_feng(X, y, iterations=100000, alpha=1e-1)

plt.scatter(x, y, marker='x', c='r', label="Actual Value"); plt.title("Normalized x x**2, x**3 featu
plt.plot(x,X@model_w + model_b, label="Predicted Value"); plt.xlabel("x"); plt.ylabel
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In [*]:

Congratulations!

In this lab you:

• learned how linear regression can model complex, even highly non-linear functions using feature

engineering

• recognized that it is important to apply feature scaling when doing feature engineering

In [ ]:

Iteration         0, Cost: 2.24887e-01
Iteration    100000, Cost: 2.31061e-02
Iteration    200000, Cost: 1.83619e-02
Iteration    300000, Cost: 1.47950e-02

x = np.arange(0,20,1)
y = np.cos(x/2)

X = np.c_[x, x**2, x**3,x**4, x**5, x**6, x**7, x**8, x**9, x**10, x**11, x**12, 
X = zscore_normalize_features(X) 

model_w,model_b = run_gradient_descent_feng(X, y, iterations=1000000, alpha = 1e-1

plt.scatter(x, y, marker='x', c='r', label="Actual Value"); plt.title("Normalized x x**2, x**3 featu
plt.plot(x,X@model_w + model_b, label="Predicted Value"); plt.xlabel("x"); plt.ylabel
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