
Optional Lab: Feature scaling and Learning Rate
(Multi-variable)

Goals

In this lab you will:

• Utilize the multiple variables routines developed in the previous lab

• run Gradient Descent on a data set with multiple features

• explore the impact of the learning rate alpha on gradient descent

• improve performance of gradient descent by feature scaling using z-score normalization

Tools

You will utilize the functions developed in the last lab as well as matplotlib and NumPy.

In [1]:

Notation

General
Notation

Description
Python (if

applicable)

scalar, non bold

vector, bold

matrix, bold capital

Regression

training example maxtrix X_train

training example targets y_train

, Training Example X[i] , y[i]

m number of training examples m

n number of features in each example n

parameter: weight, w

parameter: bias b

The result of the model evaluation at  parameterized by :
f_wb

the gradient or partial derivative of cost with respect to a parameter dj_dw[j]

the gradient or partial derivative of cost with respect to a parameter dj_db
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Problem Statement

import numpy as np
import matplotlib.pyplot as plt
from lab_utils_multi import load_house_data, run_gradient_descent
from lab_utils_multi import norm_plot, plt_equal_scale, plot_cost_i_w
from lab_utils_common import dlc
np.set_printoptions(precision=2)
plt.style.use('./deeplearning.mplstyle')
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As in the previous labs, you will use the motivating example of housing price prediction. The training data

set contains many examples with 4 features (size, bedrooms, floors and age) shown in the table below.

Note, in this lab, the Size feature is in sqft while earlier labs utilized 1000 sqft. This data set is larger than

the previous lab.

We would like to build a linear regression model using these values so we can then predict the price for

other houses - say, a house with 1200 sqft, 3 bedrooms, 1 floor, 40 years old.

Dataset:

Size (sqft) Number of Bedrooms Number of floors Age of Home Price (1000s dollars)

952 2 1 65 271.5

1244 3 2 64 232

1947 3 2 17 509.8

... ... ... ... ...

In [2]:

Let's view the dataset and its features by plotting each feature versus price.

In [3]:

Plotting each feature vs. the target, price, provides some indication of which features have the strongest

influence on price. Above, increasing size also increases price. Bedrooms and floors don't seem to have

a strong impact on price. Newer houses have higher prices than older houses.

Gradient Descent With Multiple Variables

Here are the equations you developed in the last lab on gradient descent for multiple variables.:

repeat

}

 until convergence: {
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for j = 0..n-1 (1)

# load the dataset
X_train, y_train = load_house_data()
X_features = ['size(sqft)','bedrooms','floors','age']

fig,ax=plt.subplots(1, 4, figsize=(12, 3), sharey=True)
for i in range(len(ax)):

ax[i].scatter(X_train[:,i],y_train)
ax[i].set_xlabel(X_features[i])

ax[0].set_ylabel("Price (1000's)")
plt.show()
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where, n is the number of features, parameters , , are updated simultaneously and where

• m is the number of training examples in the data set
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Learning Rate

The lectures discussed some of the issues related to setting the learning rate . The learning rate

controls the size of the update to the parameters. See equation (1) above. It is shared by all the

parameters.

Let's run gradient descent and try a few settings of  on our data set

�
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In [4]:

It appears the learning rate is too high. The solution does not converge. Cost is increasing rather than

decreasing. Let's plot the result:

Iteration Cost          w0       w1       w2       w3       b       djdw0    djdw1    
djdw2    djdw3    djdb  
---------------------|--------|--------|--------|--------|--------|--------|--------
|--------|--------|--------|
        0 9.55884e+04  5.5e-01  1.0e-03  5.1e-04  1.2e-02  3.6e-04 -5.5e+05 -1.0e+03 
-5.2e+02 -1.2e+04 -3.6e+02
        1 1.28213e+05 -8.8e-02 -1.7e-04 -1.0e-04 -3.4e-03 -4.8e-05  6.4e+05  1.2e+03  
6.2e+02  1.6e+04  4.1e+02
        2 1.72159e+05  6.5e-01  1.2e-03  5.9e-04  1.3e-02  4.3e-04 -7.4e+05 -1.4e+03 
-7.0e+02 -1.7e+04 -4.9e+02
        3 2.31358e+05 -2.1e-01 -4.0e-04 -2.3e-04 -7.5e-03 -1.2e-04  8.6e+05  1.6e+03  
8.3e+02  2.1e+04  5.6e+02
        4 3.11100e+05  7.9e-01  1.4e-03  7.1e-04  1.5e-02  5.3e-04 -1.0e+06 -1.8e+03 
-9.5e+02 -2.3e+04 -6.6e+02
        5 4.18517e+05 -3.7e-01 -7.1e-04 -4.0e-04 -1.3e-02 -2.1e-04  1.2e+06  2.1e+03  
1.1e+03  2.8e+04  7.5e+02
        6 5.63212e+05  9.7e-01  1.7e-03  8.7e-04  1.8e-02  6.6e-04 -1.3e+06 -2.5e+03 
-1.3e+03 -3.1e+04 -8.8e+02
        7 7.58122e+05 -5.8e-01 -1.1e-03 -6.2e-04 -1.9e-02 -3.4e-04  1.6e+06  2.9e+03  
1.5e+03  3.8e+04  1.0e+03
        8 1.02068e+06  1.2e+00  2.2e-03  1.1e-03  2.3e-02  8.3e-04 -1.8e+06 -3.3e+03 
-1.7e+03 -4.2e+04 -1.2e+03
        9 1.37435e+06 -8.7e-01 -1.7e-03 -9.1e-04 -2.7e-02 -5.2e-04  2.1e+06  3.9e+03  
2.0e+03  5.1e+04  1.4e+03
w,b found by gradient descent: w: [-0.87 -0.   -0.   -0.03], b: -0.00

#set alpha to 9.9e-7
_, _, hist = run_gradient_descent(X_train, y_train, 10, alpha = 9.9e-7)
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In [5]:

The plot on the right shows the value of one of the parameters, . At each iteration, it is overshooting

the optimal value and as a result, cost ends up increasing rather than approaching the minimum. Note

that this is not a completely accurate picture as there are 4 parameters being modified each pass rather

than just one. This plot is only showing  with the other parameters fixed at benign values. In this and

later plots you may notice the blue and orange lines being slightly off.
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Let's try a bit smaller value and see what happens.
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Cost is decreasing throughout the run showing that alpha is not too large.

Iteration Cost          w0       w1       w2       w3       b       djdw0    djdw1    
djdw2    djdw3    djdb  
---------------------|--------|--------|--------|--------|--------|--------|--------
|--------|--------|--------|
        0 6.64616e+04  5.0e-01  9.1e-04  4.7e-04  1.1e-02  3.3e-04 -5.5e+05 -1.0e+03 
-5.2e+02 -1.2e+04 -3.6e+02
        1 6.18990e+04  1.8e-02  2.1e-05  2.0e-06 -7.9e-04  1.9e-05  5.3e+05  9.8e+02  
5.2e+02  1.3e+04  3.4e+02
        2 5.76572e+04  4.8e-01  8.6e-04  4.4e-04  9.5e-03  3.2e-04 -5.1e+05 -9.3e+02 
-4.8e+02 -1.1e+04 -3.4e+02
        3 5.37137e+04  3.4e-02  3.9e-05  2.8e-06 -1.6e-03  3.8e-05  4.9e+05  9.1e+02  
4.8e+02  1.2e+04  3.2e+02
        4 5.00474e+04  4.6e-01  8.2e-04  4.1e-04  8.0e-03  3.2e-04 -4.8e+05 -8.7e+02 
-4.5e+02 -1.1e+04 -3.1e+02
        5 4.66388e+04  5.0e-02  5.6e-05  2.5e-06 -2.4e-03  5.6e-05  4.6e+05  8.5e+02  
4.5e+02  1.2e+04  2.9e+02
        6 4.34700e+04  4.5e-01  7.8e-04  3.8e-04  6.4e-03  3.2e-04 -4.4e+05 -8.1e+02 
-4.2e+02 -9.8e+03 -2.9e+02
        7 4.05239e+04  6.4e-02  7.0e-05  1.2e-06 -3.3e-03  7.3e-05  4.3e+05  7.9e+02  
4.2e+02  1.1e+04  2.7e+02
        8 3.77849e+04  4.4e-01  7.5e-04  3.5e-04  4.9e-03  3.2e-04 -4.1e+05 -7.5e+02 
-3.9e+02 -9.1e+03 -2.7e+02
        9 3.52385e+04  7.7e-02  8.3e-05 -1.1e-06 -4.2e-03  8.9e-05  4.0e+05  7.4e+02  
3.9e+02  1.0e+04  2.5e+02
w,b found by gradient descent: w: [ 7.74e-02  8.27e-05 -1.06e-06 -4.20e-03], b: 0.00

plot_cost_i_w(X_train, y_train, hist)

#set alpha to 9e-7
_,_,hist = run_gradient_descent(X_train, y_train, 10, alpha = 9e-7)
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In [7]:

On the left, you see that cost is decreasing as it should. On the right, you can see that  is still

oscillating around the minimum, but it is decreasing each iteration rather than increasing. Note above

that dj_dw[0]  changes sign with each iteration as w[0]  jumps over the optimal value. This alpha

value will converge. You can vary the number of iterations to see how it behaves.
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 = 1e-7

Let's try a bit smaller value for  and see what happens.
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Cost is decreasing throughout the run showing that  is not too large.�

Iteration Cost          w0       w1       w2       w3       b       djdw0    djdw1    
djdw2    djdw3    djdb  
---------------------|--------|--------|--------|--------|--------|--------|--------
|--------|--------|--------|
        0 4.42313e+04  5.5e-02  1.0e-04  5.2e-05  1.2e-03  3.6e-05 -5.5e+05 -1.0e+03 
-5.2e+02 -1.2e+04 -3.6e+02
        1 2.76461e+04  9.8e-02  1.8e-04  9.2e-05  2.2e-03  6.5e-05 -4.3e+05 -7.9e+02 
-4.0e+02 -9.5e+03 -2.8e+02
        2 1.75102e+04  1.3e-01  2.4e-04  1.2e-04  2.9e-03  8.7e-05 -3.4e+05 -6.1e+02 
-3.1e+02 -7.3e+03 -2.2e+02
        3 1.13157e+04  1.6e-01  2.9e-04  1.5e-04  3.5e-03  1.0e-04 -2.6e+05 -4.8e+02 
-2.4e+02 -5.6e+03 -1.8e+02
        4 7.53002e+03  1.8e-01  3.3e-04  1.7e-04  3.9e-03  1.2e-04 -2.1e+05 -3.7e+02 
-1.9e+02 -4.2e+03 -1.4e+02
        5 5.21639e+03  2.0e-01  3.5e-04  1.8e-04  4.2e-03  1.3e-04 -1.6e+05 -2.9e+02 
-1.5e+02 -3.1e+03 -1.1e+02
        6 3.80242e+03  2.1e-01  3.8e-04  1.9e-04  4.5e-03  1.4e-04 -1.3e+05 -2.2e+02 
-1.1e+02 -2.3e+03 -8.6e+01
        7 2.93826e+03  2.2e-01  3.9e-04  2.0e-04  4.6e-03  1.4e-04 -9.8e+04 -1.7e+02 
-8.6e+01 -1.7e+03 -6.8e+01
        8 2.41013e+03  2.3e-01  4.1e-04  2.1e-04  4.7e-03  1.5e-04 -7.7e+04 -1.3e+02 
-6.5e+01 -1.2e+03 -5.4e+01
        9 2.08734e+03  2.3e-01  4.2e-04  2.1e-04  4.8e-03  1.5e-04 -6.0e+04 -1.0e+02 
-4.9e+01 -7.5e+02 -4.3e+01
w,b found by gradient descent: w: [2.31e-01 4.18e-04 2.12e-04 4.81e-03], b: 0.00

plot_cost_i_w(X_train, y_train, hist)

#set alpha to 1e-7
_,_,hist = run_gradient_descent(X_train, y_train, 10, alpha = 1e-7)
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In [9]:

On the left, you see that cost is decreasing as it should. On the right you can see that  is decreasing

without crossing the minimum. Note above that dj_w0  is negative throughout the run. This solution will

also converge, though not quite as quickly as the previous example.

�0

Feature Scaling

The lectures described the importance of rescaling the dataset so the features have a similar range. If

you are interested in the details of why this is the case, click on the 'details' header below. If not, the

section below will walk through an implementation of how to do feature scaling.

Details

The lectures discussed three different techniques:

• Feature scaling, essentially dividing each positive feature by its maximum value, or more generally,

rescale each feature by both its minimum and maximum values using (x-min)/(max-min). Both ways

normalizes features to the range of -1 and 1, where the former method works for positive features

which is simple and serves well for the lecture's example, and the latter method works for any

features.

• Mean normalization: 

• Z-score normalization which we will explore below.
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z-score normalization

After z-score normalization, all features will have a mean of 0 and a standard deviation of 1.

To implement z-score normalization, adjust your input values as shown in this formula:

where  selects a feature or a column in the  matrix.  is the mean of all the values for feature (j) and

 is the standard deviation of feature (j).
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plot_cost_i_w(X_train,y_train,hist)1
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Implementation Note: When normalizing the features, it is important to store the values

used for normalization - the mean value and the standard deviation used for the

computations. After learning the parameters from the model, we often want to predict the

prices of houses we have not seen before. Given a new x value (living room area and

number of bed- rooms), we must first normalize x using the mean and standard deviation
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In [10]:

Let's look at the steps involved in Z-score normalization. The plot below shows the transformation step

by step.

def zscore_normalize_features(X):
"""

    computes  X, zcore normalized by column

    Args:
      X (ndarray (m,n))     : input data, m examples, n features

    Returns:
      X_norm (ndarray (m,n)): input normalized by column
      mu (ndarray (n,))     : mean of each feature
      sigma (ndarray (n,))  : standard deviation of each feature
    """

# find the mean of each column/feature
mu = np.mean(X, axis=0)                 # mu will have shape (n,)
# find the standard deviation of each column/feature
sigma = np.std(X, axis=0)                  # sigma will have shape (n,)
# element-wise, subtract mu for that column from each example, divide by std for that column
X_norm = (X - mu) / sigma

return (X_norm, mu, sigma)

#check our work
#from sklearn.preprocessing import scale
#scale(X_orig, axis=0, with_mean=True, with_std=True, copy=True)
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In [11]:

The plot above shows the relationship between two of the training set parameters, "age" and "size(sqft)".

These are plotted with equal scale.

• Left: Unnormalized: The range of values or the variance of the 'size(sqft)' feature is much larger than

that of age

• Middle: The first step removes the mean or average value from each feature. This leaves features

that are centered around zero. It's difficult to see the difference for the 'age' feature, but 'size(sqft)' is

clearly around zero.

• Right: The second step divides by the standard deviation. This leaves both features centered at zero

with a similar scale.

Let's normalize the data and compare it to the original data.

In [12]:

The peak to peak range of each column is reduced from a factor of thousands to a factor of 2-3 by

normalization.

X_mu = [1.42e+03 2.72e+00 1.38e+00 3.84e+01], 
X_sigma = [411.62   0.65   0.49  25.78]
Peak to Peak range by column in Raw        X:[2.41e+03 4.00e+00 1.00e+00 9.50e+01]
Peak to Peak range by column in Normalized X:[5.85 6.14 2.06 3.69]

mu = np.mean(X_train,axis=0)   
sigma = np.std(X_train,axis=0) 
X_mean = (X_train - mu)
X_norm = (X_train - mu)/sigma

fig,ax=plt.subplots(1, 3, figsize=(12, 3))
ax[0].scatter(X_train[:,0], X_train[:,3])
ax[0].set_xlabel(X_features[0]); ax[0].set_ylabel(X_features[3]);
ax[0].set_title("unnormalized")
ax[0].axis('equal')

ax[1].scatter(X_mean[:,0], X_mean[:,3])
ax[1].set_xlabel(X_features[0]); ax[0].set_ylabel(X_features[3]);
ax[1].set_title(r"X - $\mu$")
ax[1].axis('equal')

ax[2].scatter(X_norm[:,0], X_norm[:,3])
ax[2].set_xlabel(X_features[0]); ax[0].set_ylabel(X_features[3]);
ax[2].set_title(r"Z-score normalized")
ax[2].axis('equal')
plt.tight_layout(rect=[0, 0.03, 1, 0.95])
fig.suptitle("distribution of features before, during, after normalization")
plt.show()

# normalize the original features
X_norm, X_mu, X_sigma = zscore_normalize_features(X_train)
print(f"X_mu = {X_mu}, \nX_sigma = {X_sigma}")
print(f"Peak to Peak range by column in Raw        X:{np.ptp(X_train,axis=0)}")   
print(f"Peak to Peak range by column in Normalized X:{np.ptp(X_norm,axis=0)}")
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In [13]:

Notice, above, the range of the normalized data (x-axis) is centered around zero and roughly +/- 2. Most

importantly, the range is similar for each feature.

Let's re-run our gradient descent algorithm with normalized data. Note the vastly larger value of alpha.

This will speed up gradient descent.

fig,ax=plt.subplots(1, 4, figsize=(12, 3))
for i in range(len(ax)):

norm_plot(ax[i],X_train[:,i],)
ax[i].set_xlabel(X_features[i])

ax[0].set_ylabel("count");
fig.suptitle("distribution of features before normalization")
plt.show()
fig,ax=plt.subplots(1,4,figsize=(12,3))
for i in range(len(ax)):

norm_plot(ax[i],X_norm[:,i],)
ax[i].set_xlabel(X_features[i])

ax[0].set_ylabel("count"); 
fig.suptitle("distribution of features after normalization")

plt.show()
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In [14]:

The scaled features get very accurate results much, much faster!. Notice the gradient of each

parameter is tiny by the end of this fairly short run. A learning rate of 0.1 is a good start for regression

with normalized features. Let's plot our predictions versus the target values. Note, the prediction is made

using the normalized feature while the plot is shown using the original feature values.

In [15]:

The results look good. A few points to note:

Iteration Cost          w0       w1       w2       w3       b       djdw0    djdw1    
djdw2    djdw3    djdb  
---------------------|--------|--------|--------|--------|--------|--------|--------
|--------|--------|--------|
        0 5.76170e+04  8.9e+00  3.0e+00  3.3e+00 -6.0e+00  3.6e+01 -8.9e+01 -3.0e+01 
-3.3e+01  6.0e+01 -3.6e+02
      100 2.21086e+02  1.1e+02 -2.0e+01 -3.1e+01 -3.8e+01  3.6e+02 -9.2e-01  4.5e-01  
5.3e-01 -1.7e-01 -9.6e-03
      200 2.19209e+02  1.1e+02 -2.1e+01 -3.3e+01 -3.8e+01  3.6e+02 -3.0e-02  1.5e-02  
1.7e-02 -6.0e-03 -2.6e-07
      300 2.19207e+02  1.1e+02 -2.1e+01 -3.3e+01 -3.8e+01  3.6e+02 -1.0e-03  5.1e-04  
5.7e-04 -2.0e-04 -6.9e-12
      400 2.19207e+02  1.1e+02 -2.1e+01 -3.3e+01 -3.8e+01  3.6e+02 -3.4e-05  1.7e-05  
1.9e-05 -6.6e-06 -2.7e-13
      500 2.19207e+02  1.1e+02 -2.1e+01 -3.3e+01 -3.8e+01  3.6e+02 -1.1e-06  5.6e-07  
6.2e-07 -2.2e-07 -2.6e-13
      600 2.19207e+02  1.1e+02 -2.1e+01 -3.3e+01 -3.8e+01  3.6e+02 -3.7e-08  1.9e-08  
2.1e-08 -7.3e-09 -2.6e-13
      700 2.19207e+02  1.1e+02 -2.1e+01 -3.3e+01 -3.8e+01  3.6e+02 -1.2e-09  6.2e-10  
6.9e-10 -2.4e-10 -2.6e-13
      800 2.19207e+02  1.1e+02 -2.1e+01 -3.3e+01 -3.8e+01  3.6e+02 -4.1e-11  2.1e-11  
2.3e-11 -8.1e-12 -2.7e-13
      900 2.19207e+02  1.1e+02 -2.1e+01 -3.3e+01 -3.8e+01  3.6e+02 -1.4e-12  7.0e-13  
7.6e-13 -2.7e-13 -2.6e-13
w,b found by gradient descent: w: [110.56 -21.27 -32.71 -37.97], b: 363.16

w_norm, b_norm, hist = run_gradient_descent(X_norm, y_train, 1000, 1.0e-1, )

#predict target using normalized features
m = X_norm.shape[0]
yp = np.zeros(m)
for i in range(m):

yp[i] = np.dot(X_norm[i], w_norm) + b_norm

# plot predictions and targets versus original features    
fig,ax=plt.subplots(1,4,figsize=(12, 3),sharey=True)
for i in range(len(ax)):

ax[i].scatter(X_train[:,i],y_train, label = 'target')
ax[i].set_xlabel(X_features[i])
ax[i].scatter(X_train[:,i],yp,color=dlc["dlorange"], label = 'predict')

ax[0].set_ylabel("Price"); ax[0].legend();
fig.suptitle("target versus prediction using z-score normalized model")
plt.show()
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• with multiple features, we can no longer have a single plot showing results versus features.

• when generating the plot, the normalized features were used. Any predictions using the parameters

learned from a normalized training set must also be normalized.

Prediction The point of generating our model is to use it to predict housing prices that are not in the data

set. Let's predict the price of a house with 1200 sqft, 3 bedrooms, 1 floor, 40 years old. Recall, that you

must normalize the data with the mean and standard deviation derived when the training data was

normalized.

In [16]:

Cost Contours

Another way to view feature scaling is in terms of the cost

contours. When feature scales do not match, the plot of cost

versus parameters in a contour plot is asymmetric.

In the plot below, the scale of the parameters is matched. The left

plot is the cost contour plot of w[0], the square feet versus w[1],

the number of bedrooms before normalizing the features. The plot

is so asymmetric, the curves completing the contours are not

visible. In contrast, when the features are normalized, the cost

contour is much more symmetric. The result is that updates to

parameters during gradient descent can make equal progress for

each parameter.

In [17]:

Congratulations!

In this lab you:

• utilized the routines for linear regression with multiple features you developed in previous labs

• explored the impact of the learning rate  on convergence

• discovered the value of feature scaling using z-score normalization in speeding convergence

�

[-0.53  0.43 -0.79  0.06]
 predicted price of a house with 1200 sqft, 3 bedrooms, 1 floor, 40 years old = $318
709

# First, normalize out example.
x_house = np.array([1200, 3, 1, 40])
x_house_norm = (x_house - X_mu) / X_sigma
print(x_house_norm)
x_house_predict = np.dot(x_house_norm, w_norm) + b_norm
print(f" predicted price of a house with 1200 sqft, 3 bedrooms, 1 floor, 40 years old = $

plt_equal_scale(X_train, X_norm, y_train)
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