
Optional Lab: Multiple Variable Linear
Regression
In this lab, you will extend the data structures and previously developed routines to support

multiple features. Several routines are updated making the lab appear lengthy, but it makes

minor adjustments to previous routines making it quick to review.

Outline
• 1.1 Goals

• 1.2 Tools

• 1.3 Notation

• 2 Problem Statement

• 2.1 Matrix X containing our examples

• 2.2 Parameter vector w, b

• 3 Model Prediction With Multiple Variables

• 3.1 Single Prediction element by element

• 3.2 Single Prediction, vector

• 4 Compute Cost With Multiple Variables

• 5 Gradient Descent With Multiple Variables

• 5.1 Compute Gradient with Multiple Variables

• 5.2 Gradient Descent With Multiple Variables

• 6 Congratulations

1.1 Goals

• Extend our regression model routines to support multiple features

▪ Extend data structures to support multiple features

▪ Rewrite prediction, cost and gradient routines to support multiple features

▪ Utilize NumPy np.dot to vectorize their implementations for speed and simplicity

1.2 Tools

In this lab, we will make use of:

• NumPy, a popular library for scientific computing

• Matplotlib, a popular library for plotting data

In [1]: import copy, math
import numpy as np
import matplotlib.pyplot as plt
plt.style.use('./deeplearning.mplstyle')
np.set_printoptions(precision=2) # reduced display precision on numpy arrays

1
2
3
4
5
6

http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab02_Multiple_Variable_Soln.ipynb#Optional-Lab:-Multiple-Variable-Linear-Regression
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab02_Multiple_Variable_Soln.ipynb#Optional-Lab:-Multiple-Variable-Linear-Regression
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab02_Multiple_Variable_Soln.ipynb#Outline
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab02_Multiple_Variable_Soln.ipynb#Outline
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab02_Multiple_Variable_Soln.ipynb#toc_15456_1.1
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab02_Multiple_Variable_Soln.ipynb#toc_15456_1.1
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab02_Multiple_Variable_Soln.ipynb#toc_15456_1.2
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab02_Multiple_Variable_Soln.ipynb#toc_15456_1.2
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab02_Multiple_Variable_Soln.ipynb#toc_15456_1.3
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab02_Multiple_Variable_Soln.ipynb#toc_15456_1.3
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab02_Multiple_Variable_Soln.ipynb#toc_15456_2
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab02_Multiple_Variable_Soln.ipynb#toc_15456_2
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab02_Multiple_Variable_Soln.ipynb#toc_15456_2.1
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab02_Multiple_Variable_Soln.ipynb#toc_15456_2.1
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab02_Multiple_Variable_Soln.ipynb#toc_15456_2.2
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab02_Multiple_Variable_Soln.ipynb#toc_15456_2.2
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab02_Multiple_Variable_Soln.ipynb#toc_15456_3
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab02_Multiple_Variable_Soln.ipynb#toc_15456_3
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab02_Multiple_Variable_Soln.ipynb#toc_15456_3.1
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab02_Multiple_Variable_Soln.ipynb#toc_15456_3.1
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab02_Multiple_Variable_Soln.ipynb#toc_15456_3.2
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab02_Multiple_Variable_Soln.ipynb#toc_15456_3.2
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab02_Multiple_Variable_Soln.ipynb#toc_15456_4
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab02_Multiple_Variable_Soln.ipynb#toc_15456_4
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab02_Multiple_Variable_Soln.ipynb#toc_15456_5
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab02_Multiple_Variable_Soln.ipynb#toc_15456_5
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab02_Multiple_Variable_Soln.ipynb#toc_15456_5.1
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab02_Multiple_Variable_Soln.ipynb#toc_15456_5.1
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab02_Multiple_Variable_Soln.ipynb#toc_15456_5.2
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab02_Multiple_Variable_Soln.ipynb#toc_15456_5.2
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab02_Multiple_Variable_Soln.ipynb#toc_15456_6
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab02_Multiple_Variable_Soln.ipynb#toc_15456_6
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab02_Multiple_Variable_Soln.ipynb#1.1-Goals
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab02_Multiple_Variable_Soln.ipynb#1.1-Goals
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab02_Multiple_Variable_Soln.ipynb#1.2-Tools
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab02_Multiple_Variable_Soln.ipynb#1.2-Tools

1.3 Notation

Here is a summary of some of the notation you will encounter, updated for multiple features.

General

Notation
Description

Python (if
applicable)

scalar, non bold

vector, bold

matrix, bold capital

Regression

training example matrix X_train

training example targets y_train

, Training Example X[i] , y[i]

m number of training examples m

n number of features in each example n

parameter: weight, w

parameter: bias b

The result of the model evaluation at parameterized by :
f_wb

�

�

�

�

�

�(�) �(�) ��ℎ

�

�

()��,� �
(�) �(�) �, �

() = � ⋅ + ���,� �
(�) �(�)

2 Problem Statement
You will use the motivating example of housing price prediction. The training dataset

contains three examples with four features (size, bedrooms, floors and, age) shown in the

table below. Note that, unlike the earlier labs, size is in sqft rather than 1000 sqft. This

causes an issue, which you will solve in the next lab!

Size (sqft) Number of Bedrooms Number of floors Age of Home Price (1000s dollars)

2104 5 1 45 460

1416 3 2 40 232

852 2 1 35 178

You will build a linear regression model using these values so you can then predict the price

for other houses. For example, a house with 1200 sqft, 3 bedrooms, 1 floor, 40 years old.

Please run the following code cell to create your X_train and y_train variables.

In [2]:

2.1 Matrix X containing our examples

import numpy as np
X_train = np.array([[2104, 5, 1, 45], [1416, 3, 2, 40], [852, 2, 1, 35]])
y_train = np.array([460, 232, 178])

1
2
3
4

http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab02_Multiple_Variable_Soln.ipynb#1.3-Notation
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab02_Multiple_Variable_Soln.ipynb#1.3-Notation
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab02_Multiple_Variable_Soln.ipynb#2-Problem-Statement
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab02_Multiple_Variable_Soln.ipynb#2-Problem-Statement
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab02_Multiple_Variable_Soln.ipynb#2.1-Matrix-X-containing-our-examples
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab02_Multiple_Variable_Soln.ipynb#2.1-Matrix-X-containing-our-examples

Similar to the table above, examples are stored in a NumPy matrix X_train . Each row of

the matrix represents one example. When you have training examples (is three in our

example), and there are features (four in our example), is a matrix with dimensions (,

) (m rows, n columns).

notation:

• is vector containing example i.

• is element j in example i. The superscript in parenthesis indicates the example

number while the subscript represents an element.

Display the input data.

� �

� � �

�

� =

�
(0)
0

�
(1)
0

⋯
�
(�−1)
0

�
(0)
1

�
(1)
1

�
(�−1)
1

⋯
⋯

⋯

�
(0)
�−1

�
(1)
�−1

�
(�−1)
�−1

�(�) �(�) = (, ,⋯ ,)�
(�)
0 �

(�)
1 �

(�)
�−1

�
(�)
�

In [3]:

2.2 Parameter vector w, b

• is a vector with elements.

▪ Each element contains the parameter associated with one feature.

▪ in our dataset, n is 4.

▪ notionally, we draw this as a column vector

• is a scalar parameter.

� �

� =

�0

�1

⋯
��−1

�

For demonstration, and will be loaded with some initial selected values that are near the

optimal. is a 1-D NumPy vector.

� �

�

X Shape: (3, 4), X Type:<class 'numpy.ndarray'>)
[[2104 5 1 45]
 [1416 3 2 40]
 [852 2 1 35]]
y Shape: (3,), y Type:<class 'numpy.ndarray'>)
[460 232 178]

data is stored in numpy array/matrix
print(f"X Shape: {X_train.shape}, X Type:{type(X_train)})")
print(X_train)
print(f"y Shape: {y_train.shape}, y Type:{type(y_train)})")
print(y_train)

1
2
3
4
5
6

http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab02_Multiple_Variable_Soln.ipynb#2.2-Parameter-vector-w,-b
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab02_Multiple_Variable_Soln.ipynb#2.2-Parameter-vector-w,-b

In [4]:

3 Model Prediction With Multiple
Variables
The model's prediction with multiple variables is given by the linear model:

or in vector notation:

where is a vector dot product

To demonstrate the dot product, we will implement prediction using (1) and (2).

(�) = + +. . . + + ���,� �0�0 �1�1 ��−1��−1 (1)

(�) = � ⋅ � + ���,� (2)
⋅

3.1 Single Prediction element by element

Our previous prediction multiplied one feature value by one parameter and added a bias

parameter. A direct extension of our previous implementation of prediction to multiple

features would be to implement (1) above using loop over each element, performing the

multiply with its parameter and then adding the bias parameter at the end.

In [5]:

w_init shape: (4,), b_init type: <class 'float'>

b_init = 785.1811367994083
w_init = np.array([0.39133535, 18.75376741, -53.36032453, -26.42131618
print(f"w_init shape: {w_init.shape}, b_init type: {type(b_init)}")

def predict_single_loop(x, w, b):
"""

 single predict using linear regression

 Args:
 x (ndarray): Shape (n,) example with multiple features
 w (ndarray): Shape (n,) model parameters
 b (scalar): model parameter

 Returns:
 p (scalar): prediction
 """

n = x.shape[0]
p = 0
for i in range(n):

p_i = x[i] * w[i]
p = p + p_i

p = p + b
return p

1
2
3
4

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab02_Multiple_Variable_Soln.ipynb#3-Model-Prediction-With-Multiple-Variables
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab02_Multiple_Variable_Soln.ipynb#3-Model-Prediction-With-Multiple-Variables
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab02_Multiple_Variable_Soln.ipynb#3.1-Single-Prediction-element-by-element
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab02_Multiple_Variable_Soln.ipynb#3.1-Single-Prediction-element-by-element

In [6]:

Note the shape of x_vec . It is a 1-D NumPy vector with 4 elements, (4,). The result, f_wb

is a scalar.

3.2 Single Prediction, vector

Noting that equation (1) above can be implemented using the dot product as in (2) above.

We can make use of vector operations to speed up predictions.

Recall from the Python/Numpy lab that NumPy np.dot() [link (https://numpy.org

/doc/stable/reference/generated/numpy.dot.html)] can be used to perform a vector dot

product.

In [7]:

In [8]:

The results and shapes are the same as the previous version which used looping. Going

forward, np.dot will be used for these operations. The prediction is now a single

statement. Most routines will implement it directly rather than calling a separate predict

routine.

x_vec shape (4,), x_vec value: [2104 5 1 45]
f_wb shape (), prediction: 459.9999976194083

x_vec shape (4,), x_vec value: [2104 5 1 45]
f_wb shape (), prediction: 459.9999976194083

get a row from our training data
x_vec = X_train[0,:]
print(f"x_vec shape {x_vec.shape}, x_vec value: {x_vec}")

make a prediction
f_wb = predict_single_loop(x_vec, w_init, b_init)
print(f"f_wb shape {f_wb.shape}, prediction: {f_wb}")

def predict(x, w, b):
"""

 single predict using linear regression
 Args:
 x (ndarray): Shape (n,) example with multiple features
 w (ndarray): Shape (n,) model parameters
 b (scalar): model parameter

 Returns:
 p (scalar): prediction
 """

p = np.dot(x, w) + b
return p

get a row from our training data
x_vec = X_train[0,:]
print(f"x_vec shape {x_vec.shape}, x_vec value: {x_vec}")

make a prediction
f_wb = predict(x_vec,w_init, b_init)
print(f"f_wb shape {f_wb.shape}, prediction: {f_wb}")

1
2
3
4
5
6
7
8

1
2
3
4
5
6
7
8
9

10
11
12
13
14

1
2
3
4
5
6
7
8

http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab02_Multiple_Variable_Soln.ipynb#3.2-Single-Prediction,-vector
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab02_Multiple_Variable_Soln.ipynb#3.2-Single-Prediction,-vector
https://numpy.org/doc/stable/reference/generated/numpy.dot.html
https://numpy.org/doc/stable/reference/generated/numpy.dot.html
https://numpy.org/doc/stable/reference/generated/numpy.dot.html
https://numpy.org/doc/stable/reference/generated/numpy.dot.html
https://numpy.org/doc/stable/reference/generated/numpy.dot.html
https://numpy.org/doc/stable/reference/generated/numpy.dot.html
https://numpy.org/doc/stable/reference/generated/numpy.dot.html
https://numpy.org/doc/stable/reference/generated/numpy.dot.html
https://numpy.org/doc/stable/reference/generated/numpy.dot.html

4 Compute Cost With Multiple Variables
The equation for the cost function with multiple variables is:

where:

In contrast to previous labs, and are vectors rather than scalars supporting multiple

features.

�(�, �)

�(�, �) = (() −1
2� ∑

�=0

�−1
��,� �

(�) �(�))2 (3)

() = � ⋅ + ���,� �
(�) �(�) (4)

� �(�)

Below is an implementation of equations (3) and (4). Note that this uses a standard pattern

for this course where a for loop over all m examples is used.

In [9]:

In [10]:

Expected Result: Cost at optimal w : 1.5578904045996674e-12

5 Gradient Descent With Multiple
Variables
Gradient descent for multiple variables:

Cost at optimal w : 1.5578904428966628e-12

def compute_cost(X, y, w, b):
"""

 compute cost
 Args:
 X (ndarray (m,n)): Data, m examples with n features
 y (ndarray (m,)) : target values
 w (ndarray (n,)) : model parameters
 b (scalar) : model parameter

 Returns:
 cost (scalar): cost
 """

m = X.shape[0]
cost = 0.0
for i in range(m):

f_wb_i = np.dot(X[i], w) + b #(n,)(n,) = scalar (see np.dot)
cost = cost + (f_wb_i - y[i])**2 #scalar

cost = cost / (2 * m) #scalar
return cost

Compute and display cost using our pre-chosen optimal parameters.
cost = compute_cost(X_train, y_train, w_init, b_init)
print(f'Cost at optimal w : {cost}')

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

1
2
3
4

http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab02_Multiple_Variable_Soln.ipynb#4-Compute-Cost-With-Multiple-Variables
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab02_Multiple_Variable_Soln.ipynb#4-Compute-Cost-With-Multiple-Variables
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab02_Multiple_Variable_Soln.ipynb#5-Gradient-Descent-With-Multiple-Variables
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab02_Multiple_Variable_Soln.ipynb#5-Gradient-Descent-With-Multiple-Variables

where, n is the number of features, parameters , , are updated simultaneously and

where

repeat

}

 until convergence: {

= − ��� ��
∂�(�, �)
∂��

� = � − � ∂�(�, �)
∂�

for j = 0..n-1 (5)

�� �

∂�(�, �)
∂��

∂�(�, �)
∂�

= (() −)1
� ∑
�=0

�−1
��,� �

(�) �(�) �(�)�

= (() −)1
� ∑
�=0

�−1
��,� �

(�) �(�)

(6)

(7)

5.1 Compute Gradient with Multiple Variables

An implementation for calculating the equations (6) and (7) is below. There are many ways

to implement this. In this version, there is an

• outer loop over all m examples.

▪ for the example can be computed directly and accumulated

▪ in a second loop over all n features:

◦ is computed for each .

∂�(�,�)
∂�

∂�(�,�)
∂��

��

In [11]: def compute_gradient(X, y, w, b):
"""

 Computes the gradient for linear regression
 Args:
 X (ndarray (m,n)): Data, m examples with n features
 y (ndarray (m,)) : target values
 w (ndarray (n,)) : model parameters
 b (scalar) : model parameter

 Returns:
 dj_dw (ndarray (n,)): The gradient of the cost w.r.t. the parameters w.
 dj_db (scalar): The gradient of the cost w.r.t. the parameter b.
 """

m,n = X.shape #(number of examples, number of features)
dj_dw = np.zeros((n,))
dj_db = 0.

for i in range(m):
err = (np.dot(X[i], w) + b) - y[i]
for j in range(n):

dj_dw[j] = dj_dw[j] + err * X[i, j]
dj_db = dj_db + err

dj_dw = dj_dw / m
dj_db = dj_db / m

return dj_db, dj_dw

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab02_Multiple_Variable_Soln.ipynb#5.1-Compute-Gradient-with-Multiple-Variables
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab02_Multiple_Variable_Soln.ipynb#5.1-Compute-Gradient-with-Multiple-Variables

In [12]:

Expected Result: dj_db at initial w,b: -1.6739251122999121e-06

dj_dw at initial w,b:

[-2.73e-03 -6.27e-06 -2.22e-06 -6.92e-05]

5.2 Gradient Descent With Multiple Variables

The routine below implements equation (5) above.

dj_db at initial w,b: -1.6739251501955248e-06
dj_dw at initial w,b:
 [-2.73e-03 -6.27e-06 -2.22e-06 -6.92e-05]

#Compute and display gradient
tmp_dj_db, tmp_dj_dw = compute_gradient(X_train, y_train, w_init, b_init
print(f'dj_db at initial w,b: {tmp_dj_db}')
print(f'dj_dw at initial w,b: \n {tmp_dj_dw}')

1
2
3
4
5

http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab02_Multiple_Variable_Soln.ipynb#5.2-Gradient-Descent-With-Multiple-Variables
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab02_Multiple_Variable_Soln.ipynb#5.2-Gradient-Descent-With-Multiple-Variables

In [13]:

In the next cell you will test the implementation.

def gradient_descent(X, y, w_in, b_in, cost_function, gradient_function
"""

 Performs batch gradient descent to learn w and b. Updates w and b by taking
 num_iters gradient steps with learning rate alpha

 Args:
 X (ndarray (m,n)) : Data, m examples with n features
 y (ndarray (m,)) : target values
 w_in (ndarray (n,)) : initial model parameters
 b_in (scalar) : initial model parameter
 cost_function : function to compute cost
 gradient_function : function to compute the gradient
 alpha (float) : Learning rate
 num_iters (int) : number of iterations to run gradient descent

 Returns:
 w (ndarray (n,)) : Updated values of parameters
 b (scalar) : Updated value of parameter
 """

An array to store cost J and w's at each iteration primarily for graphing later
J_history = []
w = copy.deepcopy(w_in) #avoid modifying global w within function
b = b_in

for i in range(num_iters):

Calculate the gradient and update the parameters
dj_db,dj_dw = gradient_function(X, y, w, b) ##None

Update Parameters using w, b, alpha and gradient
w = w - alpha * dj_dw ##None
b = b - alpha * dj_db ##None

Save cost J at each iteration
if i<100000: # prevent resource exhaustion

J_history.append(cost_function(X, y, w, b))

Print cost every at intervals 10 times or as many iterations if < 10
if i% math.ceil(num_iters / 10) == 0:

print(f"Iteration {i:4d}: Cost {J_history[-1]:8.2f} ")

return w, b, J_history #return final w,b and J history for graphing

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

In [14]:

Expected Result: b,w found by gradient descent: -0.00,[0.2 0. -0.01 -0.07]

prediction: 426.19, target value: 460

prediction: 286.17, target value: 232

prediction: 171.47, target value: 178

In [15]:

Iteration 0: Cost 2529.46
Iteration 100: Cost 695.99
Iteration 200: Cost 694.92
Iteration 300: Cost 693.86
Iteration 400: Cost 692.81
Iteration 500: Cost 691.77
Iteration 600: Cost 690.73
Iteration 700: Cost 689.71
Iteration 800: Cost 688.70
Iteration 900: Cost 687.69
b,w found by gradient descent: -0.00,[0.2 0. -0.01 -0.07]
prediction: 426.19, target value: 460
prediction: 286.17, target value: 232
prediction: 171.47, target value: 178

import numpy as np
initialize parameters
initial_w = np.zeros_like(w_init)
initial_b = 0.
some gradient descent settings
iterations = 1000
alpha = 5.0e-7
run gradient descent
w_final, b_final, J_hist = gradient_descent(X_train, y_train, initial_w

compute_cost, compute_gradient
alpha, iterations)

print(f"b,w found by gradient descent: {b_final:0.2f},{w_final} ")
m,_ = X_train.shape
for i in range(m):

print(f"prediction: {np.dot(X_train[i], w_final) + b_final:0.2f}, target value:

import numpy as np
plot cost versus iteration
fig, (ax1, ax2) = plt.subplots(1, 2, constrained_layout=True, figsize=(
ax1.plot(J_hist)
ax2.plot(100 + np.arange(len(J_hist[100:])), J_hist[100:])
ax1.set_title("Cost vs. iteration"); ax2.set_title("Cost vs. iteration (tail)"
ax1.set_ylabel('Cost') ; ax2.set_ylabel('Cost')
ax1.set_xlabel('iteration step') ; ax2.set_xlabel('iteration step')
plt.show()

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

1
2
3
4
5
6
7
8
9

10

These results are not inspiring! Cost is still declining and our predictions are not very

accurate. The next lab will explore how to improve on this.

6 Congratulations!
In this lab you:

• Redeveloped the routines for linear regression, now with multiple variables.

• Utilized NumPy np.dot to vectorize the implementations

http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab02_Multiple_Variable_Soln.ipynb#6-Congratulations!
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W2_Lab02_Multiple_Variable_Soln.ipynb#6-Congratulations!

