
Optional Lab: Python, NumPy and
Vectorization
A brief introduction to some of the scientific computing used in this course. In particular the

NumPy scientific computing package and its use with python.
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In [1]:

1.1 Goals

In this lab, you will:

• Review the features of NumPy and Python that are used in Course 1

1.2 Useful References

• NumPy Documentation including a basic introduction: NumPy.org (https://NumPy.org

/doc/stable/)

• A challenging feature topic: NumPy Broadcasting (https://NumPy.org/doc/stable

/user/basics.broadcasting.html)

2 Python and NumPy 
Python is the programming language we will be using in this course. It has a set of numeric

data types and arithmetic operations. NumPy is a library that extends the base capabilities

import numpy as np # it is an unofficial standard to use np for numpy
import time
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of python to add a richer data set including more numeric types, vectors, matrices, and

many matrix functions. NumPy and python work together fairly seamlessly. Python

arithmetic operators work on NumPy data types and many NumPy functions will accept

python data types.

3 Vectors

3.1 Abstract

Vectors, as you will use them in this

course, are ordered arrays of

numbers. In notation, vectors are

denoted with lower case bold letters

such as . The elements of a vector

are all the same type. A vector does

not, for example, contain both

characters and numbers. The

number of elements in the array is often referred to as the dimension though

mathematicians may prefer rank. The vector shown has a dimension of . The elements of a

vector can be referenced with an index. In math settings, indexes typically run from 1 to n. In

computer science and these labs, indexing will typically run from 0 to n-1. In notation,

elements of a vector, when referenced individually will indicate the index in a subscript, for

example, the  element, of the vector  is . Note, the x is not bold in this case.

�

�

0�ℎ � �0

3.2 NumPy Arrays

NumPy's basic data structure is an indexable, n-dimensional array containing elements of

the same type ( dtype ). Right away, you may notice we have overloaded the term

'dimension'. Above, it was the number of elements in the vector, here, dimension refers to

the number of indexes of an array. A one-dimensional or 1-D array has one index. In Course

1, we will represent vectors as NumPy 1-D arrays.

• 1-D array, shape (n,): n elements indexed [0] through [n-1]

3.3 Vector Creation

Data creation routines in NumPy will generally have a first parameter which is the shape of

the object. This can either be a single value for a 1-D result or a tuple (n,m,...) specifying the

shape of the result. Below are examples of creating vectors using these routines.
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In [2]:

In [3]:

In [4]:

values can be specified manually as well.

In [5]:

These have all created a one-dimensional vector a  with four elements. a.shape  returns

the dimensions. Here we see a.shape = (4,)  indicating a 1-d array with 4 elements.

3.4 Operations on Vectors

Let's explore some operations using vectors.

3.4.1 Indexing

Elements of vectors can be accessed via indexing and slicing. NumPy provides a very

complete set of indexing and slicing capabilities. We will explore only the basics needed for

np.zeros(4) :   a = [0. 0. 0. 0.], a shape = (4,), a data type = float64
np.zeros(4,) :  a = [0. 0. 0. 0.], a shape = (4,), a data type = float64
np.random.random_sample(4): a = [0.49909867 0.46251609 0.83306502 0.927141
06], a shape = (4,), a data type = float64

  File "C:\Users\thoma\AppData\Local\Temp/ipykernel_11052/55466448.py", li
ne 1
    Some data creation routines do not take a shape tuple:
         ^
SyntaxError: invalid syntax

np.arange(4.):     a = [0. 1. 2. 3.], a shape = (4,), a data type = float6
4
np.random.rand(4): a = [0.94024719 0.16793347 0.80448453 0.01993634], a sh
ape = (4,), a data type = float64

np.array([5,4,3,2]):  a = [5 4 3 2],     a shape = (4,), a data type = int
32
np.array([5.,4,3,2]): a = [5. 4. 3. 2.], a shape = (4,), a data type = flo
at64

# NumPy routines which allocate memory and fill arrays with value
import numpy as np
a = np.zeros(4);                print(f"np.zeros(4) :   a = {a}, a shape = 
a = np.zeros((4,));             print(f"np.zeros(4,) :  a = {a}, a shape = 
a = np.random.random_sample(4); print(f"np.random.random_sample(4): a = 

Some data creation routines do not take a shape tuple:

# NumPy routines which allocate memory and fill arrays with value but do not accept shape 
import numpy as np
a = np.arange(4.);              print(f"np.arange(4.):     a = {a}, a shape = 
a = np.random.rand(4);          print(f"np.random.rand(4): a = {a}, a shape = 

# NumPy routines which allocate memory and fill with user specified values
import numpy as np
a = np.array([5,4,3,2]);  print(f"np.array([5,4,3,2]):  a = {a},     a shape = 
a = np.array([5.,4,3,2]); print(f"np.array([5.,4,3,2]): a = {a}, a shape = 
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the course here. Reference Slicing and Indexing (https://NumPy.org/doc/stable/reference

/arrays.indexing.html) for more details.

Indexing means referring to an element of an array by its position within the array.

Slicing means getting a subset of elements from an array based on their indices.

NumPy starts indexing at zero so the 3rd element of an vector  is a[2] .�

In [6]:

3.4.2 Slicing

Slicing creates an array of indices using a set of three values ( start:stop:step ). A

subset of values is also valid. Its use is best explained by example:

[0 1 2 3 4 5 6 7 8 9]
a[2].shape: () a[2]  = 2, Accessing an element returns a scalar
a[-1] = 9
The error message you'll see is:
index 10 is out of bounds for axis 0 with size 10

#vector indexing operations on 1-D vectors

a = np.arange(10)
print(a)

#access an element
print(f"a[2].shape: {a[2].shape} a[2]  = {a[2]}, Accessing an element returns a scalar"

# access the last element, negative indexes count from the end
print(f"a[-1] = {a[-1]}")

#indexs must be within the range of the vector or they will produce and error
try:

c = a[10]
except Exception as e:

print("The error message you'll see is:")
print(e)
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In [7]:

3.4.3 Single vector operations

There are a number of useful operations that involve operations on a single vector.

In [8]:

3.4.4 Vector Vector element-wise operations

Most of the NumPy arithmetic, logical and comparison operations apply to vectors as well.

a         = [0 1 2 3 4 5 6 7 8 9]
a[2:7:1] =  [2 3 4 5 6]
a[2:7:2] =  [2 4 6]
a[3:]    =  [3 4 5 6 7 8 9]
a[:3]    =  [0 1 2]
a[:]     =  [0 1 2 3 4 5 6 7 8 9]

a             : [1 2 3 4]
b = -a        : [-1 -2 -3 -4]
b = np.sum(a) : 10
b = np.mean(a): 2.5
b = a**2      : [ 1  4  9 16]

#vector slicing operations
a = np.arange(10)
print(f"a         = {a}")

#access 5 consecutive elements (start:stop:step)
c = a[2:7:1];     print("a[2:7:1] = ", c)

# access 3 elements separated by two 
c = a[2:7:2];     print("a[2:7:2] = ", c)

# access all elements index 3 and above
c = a[3:];        print("a[3:]    = ", c)

# access all elements below index 3
c = a[:3];        print("a[:3]    = ", c)

# access all elements
c = a[:];         print("a[:]     = ", c)

a = np.array([1,2,3,4])
print(f"a             : {a}")
# negate elements of a
b = -a
print(f"b = -a        : {b}")

# sum all elements of a, returns a scalar
b = np.sum(a) 
print(f"b = np.sum(a) : {b}")

b = np.mean(a)
print(f"b = np.mean(a): {b}")

b = a**2
print(f"b = a**2      : {b}")
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These operators work on an element-by-element basis. For example

= +�� �� ��

In [9]:

Of course, for this to work correctly, the vectors must be of the same size:

In [10]:

3.4.5 Scalar Vector operations

Vectors can be 'scaled' by scalar values. A scalar value is just a number. The scalar

multiplies all the elements of the vector.

In [11]:

3.4.6 Vector Vector dot product

The dot product is a mainstay of Linear Algebra and NumPy. This is an operation used

extensively in this course and should be well understood. The dot product is shown below.

Binary operators work element wise: [0 0 6 8]

The error message you'll see is:
operands could not be broadcast together with shapes (4,) (2,) 

b = 5 * a : [ 5 10 15 20]

a = np.array([ 1, 2, 3, 4])
b = np.array([-1,-2, 3, 4])
print(f"Binary operators work element wise: {a + b}")

#try a mismatched vector operation
c = np.array([1, 2])
try:

d = a + c
except Exception as e:

print("The error message you'll see is:")
print(e)

a = np.array([1, 2, 3, 4])

# multiply a by a scalar
b = 5 * a
print(f"b = 5 * a : {b}")
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The dot product multiplies the values in two vectors element-wise and then sums the result.

Vector dot product requires the dimensions of the two vectors to be the same.

Let's implement our own version of the dot product below:

Using a for loop, implement a function which returns the dot product of two vectors. The

function to return given inputs  and :

Assume both a  and b  are the same shape.

� �

� =∑
�=0

�−1
����

In [12]:

In [13]:

Note, the dot product is expected to return a scalar value.

Let's try the same operations using np.dot .

my_dot(a, b) = 24

def my_dot(a, b): 
"""

   Compute the dot product of two vectors

    Args:
      a (ndarray (n,)):  input vector 
      b (ndarray (n,)):  input vector with same dimension as a

    Returns:
      x (scalar): 
    """

x=0
for i in range(a.shape[0]):

x = x + a[i] * b[i]
return x

# test 1-D
a = np.array([1, 2, 3, 4])
b = np.array([-1, 4, 3, 2])
print(f"my_dot(a, b) = {my_dot(a, b)}")
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In [14]:

Above, you will note that the results for 1-D matched our implementation.

3.4.7 The Need for Speed: vector vs for loop

We utilized the NumPy library because it improves speed memory efficiency. Let's

demonstrate:

In [15]:

So, vectorization provides a large speed up in this example. This is because NumPy makes

better use of available data parallelism in the underlying hardware. GPU's and modern

CPU's implement Single Instruction, Multiple Data (SIMD) pipelines allowing multiple

operations to be issued in parallel. This is critical in Machine Learning where the data sets

are often very large.

3.4.8 Vector Vector operations in Course 1

NumPy 1-D np.dot(a, b) = 24, np.dot(a, b).shape = () 
NumPy 1-D np.dot(b, a) = 24, np.dot(a, b).shape = () 
24

np.dot(a, b) =  2501072.5817
Vectorized version duration: 15.6262 ms 
my_dot(a, b) =  2501072.5817
loop version duration: 6648.1161 ms 

# test 1-D
a = np.array([1, 2, 3, 4])
b = np.array([-1, 4, 3, 2])
c = np.dot(a, b)
print(f"NumPy 1-D np.dot(a, b) = {c}, np.dot(a, b).shape = {c.shape} ") 
c = np.dot(b, a)
print(f"NumPy 1-D np.dot(b, a) = {c}, np.dot(a, b).shape = {c.shape} ")
print(c)

import numpy as np
np.random.seed(1)
a = np.random.rand(10000000)  # very large arrays
b = np.random.rand(10000000)

tic = time.time()  # capture start time
c = np.dot(a, b)
toc = time.time()  # capture end time

print(f"np.dot(a, b) =  {c:.4f}")
print(f"Vectorized version duration: {1000*(toc-tic):.4f} ms ")

tic = time.time()  # capture start time
c = my_dot(a,b)
toc = time.time()  # capture end time

print(f"my_dot(a, b) =  {c:.4f}")
print(f"loop version duration: {1000*(toc-tic):.4f} ms ")

del(a);del(b)  #remove these big arrays from memory
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Vector Vector operations will appear frequently in course 1. Here is why:

• Going forward, our examples will be stored in an array, X_train  of dimension (m,n).

This will be explained more in context, but here it is important to note it is a 2

Dimensional array or matrix (see next section on matrices).

• w  will be a 1-dimensional vector of shape (n,).

• we will perform operations by looping through the examples, extracting each example

to work on individually by indexing X. For example: X[i]

• X[i]  returns a value of shape (n,), a 1-dimensional vector. Consequently, operations

involving X[i]  are often vector-vector.

That is a somewhat lengthy explanation, but aligning and understanding the shapes of your

operands is important when performing vector operations.

In [16]:

4 Matrices

4.1 Abstract

Matrices, are two dimensional arrays. The elements of a matrix are all of the same type. In

notation, matrices are denoted with capitol, bold letter such as . In this and other labs, m

is often the number of rows and n  the number of columns. The elements of a matrix can be

referenced with a two dimensional index. In math settings, numbers in the index typically run

from 1 to n. In computer science and these labs, indexing will run from 0 to n-1.

Generic Matrix Notation, 1st index is row, 2nd is column

�

4.2 NumPy Arrays

NumPy's basic data structure is an indexable, n-dimensional array containing elements of

the same type ( dtype ). These were described earlier. Matrices have a two-dimensional (2-

D) index [m,n].

X[1] has shape (1,)
w has shape (1,)
c has shape ()

# show common Course 1 example
X = np.array([[1],[2],[3],[4]])
w = np.array([2])
c = np.dot(X[1], w)

print(f"X[1] has shape {X[1].shape}")
print(f"w has shape {w.shape}")
print(f"c has shape {c.shape}")
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In Course 1, 2-D matrices are used to hold training data. Training data is  examples by 

features creating an (m,n) array. Course 1 does not do operations directly on matrices but

typically extracts an example as a vector and operates on that. Below you will review:

• data creation

• slicing and indexing

� �

4.3 Matrix Creation

The same functions that created 1-D vectors will create 2-D or n-D arrays. Here are some

examples

Below, the shape tuple is provided to achieve a 2-D result. Notice how NumPy uses

brackets to denote each dimension. Notice further than NumPy, when printing, will print one

row per line.

In [17]:

One can also manually specify data. Dimensions are specified with additional brackets

matching the format in the printing above.

In [18]:

4.4 Operations on Matrices

Let's explore some operations using matrices.

a shape = (1, 5), a = [[0. 0. 0. 0. 0.]]
a shape = (2, 1), a = [[0.]
 [0.]]
a shape = (1, 1), a = [[0.44236513]]

 a shape = (3, 1), np.array: a = [[5]
 [4]
 [3]]
 a shape = (3, 1), np.array: a = [[5]
 [4]
 [3]]

a = np.zeros((1, 5))                                       
print(f"a shape = {a.shape}, a = {a}")                     

a = np.zeros((2, 1))                                                                   
print(f"a shape = {a.shape}, a = {a}") 

a = np.random.random_sample((1, 1))  
print(f"a shape = {a.shape}, a = {a}") 

# NumPy routines which allocate memory and fill with user specified values
a = np.array([[5], [4], [3]]);   print(f" a shape = {a.shape}, np.array: a = 
a = np.array([[5],   # One can also
              [4],   # separate values
              [3]]); #into separate rows
print(f" a shape = {a.shape}, np.array: a = {a}")
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4.4.1 Indexing

Matrices include a second index. The two indexes describe [row, column]. Access can either

return an element or a row/column. See below:

In [19]:

It is worth drawing attention to the last example. Accessing a matrix by just specifying the

row will return a 1-D vector.

Reshape

The previous example used reshape (https://numpy.org/doc/stable/reference/generated

/numpy.reshape.html) to shape the array.

a = np.arange(6).reshape(-1, 2)

This line of code first created a 1-D Vector of six elements. It then reshaped that vector into

a 2-D array using the reshape command. This could have been written:

a = np.arange(6).reshape(3, 2)

To arrive at the same 3 row, 2 column array. The -1 argument tells the routine to compute

the number of rows given the size of the array and the number of columns.

4.4.2 Slicing

Slicing creates an array of indices using a set of three values ( start:stop:step ). A

subset of values is also valid. Its use is best explained by example:

a.shape: (3, 2), 
a= [[0 1]
 [2 3]
 [4 5]]

a[2,0].shape:   (), a[2,0] = 4,     type(a[2,0]) = <class 'numpy.int32'> A
ccessing an element returns a scalar

a[2].shape:   (2,), a[2]   = [4 5], type(a[2])   = <class 'numpy.ndarray'>

#vector indexing operations on matrices
a = np.arange(6).reshape(-1, 2)   #reshape is a convenient way to create matrices
print(f"a.shape: {a.shape}, \na= {a}")

#access an element
print(f"\na[2,0].shape:   {a[2, 0].shape}, a[2,0] = {a[2, 0]},     type(a[2,0]) = 

#access a row
print(f"a[2].shape:   {a[2].shape}, a[2]   = {a[2]}, type(a[2])   = {type
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In [20]:

Congratulations!

In this lab you mastered the features of Python and NumPy that are needed for Course 1.

In [ ]:

a = 
[[ 0  1  2  3  4  5  6  7  8  9]
 [10 11 12 13 14 15 16 17 18 19]]
a[0, 2:7:1] =  [2 3 4 5 6] ,  a[0, 2:7:1].shape = (5,) a 1-D array
a[:, 2:7:1] = 
 [[ 2  3  4  5  6]
 [12 13 14 15 16]] ,  a[:, 2:7:1].shape = (2, 5) a 2-D array
a[:,:] = 
 [[ 0  1  2  3  4  5  6  7  8  9]
 [10 11 12 13 14 15 16 17 18 19]] ,  a[:,:].shape = (2, 10)
a[1,:] =  [10 11 12 13 14 15 16 17 18 19] ,  a[1,:].shape = (10,) a 1-D ar
ray
a[1]   =  [10 11 12 13 14 15 16 17 18 19] ,  a[1].shape   = (10,) a 1-D ar
ray

#vector 2-D slicing operations
a = np.arange(20).reshape(-1, 10)
print(f"a = \n{a}")

#access 5 consecutive elements (start:stop:step)
print("a[0, 2:7:1] = ", a[0, 2:7:1], ",  a[0, 2:7:1].shape =", a[0, 2:7

#access 5 consecutive elements (start:stop:step) in two rows
print("a[:, 2:7:1] = \n", a[:, 2:7:1], ",  a[:, 2:7:1].shape =", a[:, 2

# access all elements
print("a[:,:] = \n", a[:,:], ",  a[:,:].shape =", a[:,:].shape)

# access all elements in one row (very common usage)
print("a[1,:] = ", a[1,:], ",  a[1,:].shape =", a[1,:].shape, "a 1-D array"
# same as
print("a[1]   = ", a[1],   ",  a[1].shape   =", a[1].shape, "a 1-D array"
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