
Practice Lab: Linear Regression
Welcome to your first practice lab! In this lab, you will implement linear regression
with one variable to predict profits for a restaurant franchise.

Outline
• 1 - Packages
• 2 - Linear regression with one variable

▪ 2.1 Problem Statement
▪ 2.2 Dataset
▪ 2.3 Refresher on linear regression
▪ 2.4 Compute Cost

◦ Exercise 1
▪ 2.5 Gradient descent

◦ Exercise 2
▪ 2.6 Learning parameters using batch gradient descent

1 - Packages
First, let's run the cell below to import all the packages that you will need during
this assignment.

• numpy is the fundamental package for working with matrices in Python.
• matplotlib is a famous library to plot graphs in Python.
• utils.py contains helper functions for this assignment. You do not need to

modify code in this file.

2 - Problem Statement
Suppose you are the CEO of a restaurant franchise and are considering different
cities for opening a new outlet.

• You would like to expand your business to cities that may give your restaurant
higher profits.

• The chain already has restaurants in various cities and you have data for

In [1]:
import numpy as np

import matplotlib.pyplot as plt

from utils import *

import copy

import math

%matplotlib inline

The chain already has restaurants in various cities and you have data for
profits and populations from the cities.

• You also have data on cities that are candidates for a new restaurant.
▪ For these cities, you have the city population.

Can you use the data to help you identify which cities may potentially give your
business higher profits?

3 - Dataset
You will start by loading the dataset for this task.

• The load_data() function shown below loads the data into variables
x_train and y_train
▪ x_train is the population of a city
▪ y_train is the profit of a restaurant in that city. A negative value for

profit indicates a loss.
▪ Both X_train and y_train are numpy arrays.

View the variables

Before starting on any task, it is useful to get more familiar with your dataset.

• A good place to start is to just print out each variable and see what it
contains.

The code below prints the variable x_train and the type of the variable.

Type of x_train: <class 'numpy.ndarray'>

First five elements of x_train are:

 [6.1101 5.5277 8.5186 7.0032 5.8598]

x_train is a numpy array that contains decimal values that are all greater than
zero.

• These values represent the city population times 10,000
• For example, 6.1101 means that the population for that city is 61,101

Now, let's print y_train

Type of y_train: <class 'numpy.ndarray'>

In [2]:
load the dataset

x_train, y_train = load_data()

In [3]:
print x_train

print("Type of x_train:",type(x_train))

print("First five elements of x_train are:\n", x_train[:5])

In [4]:
print y_train

print("Type of y_train:",type(y_train))

print("First five elements of y_train are:\n", y_train[:5])

Type of y_train: <class 'numpy.ndarray'>

First five elements of y_train are:

 [17.592 9.1302 13.662 11.854 6.8233]

Similarly, y_train is a numpy array that has decimal values, some negative,
some positive.

• These represent your restaurant's average monthly profits in each city, in units
of $10,000.
▪ For example, 17.592 represents $175,920 in average monthly profits for

that city.
▪ -2.6807 represents -$26,807 in average monthly loss for that city.

Check the dimensions of your variables

Another useful way to get familiar with your data is to view its dimensions.

Please print the shape of x_train and y_train and see how many training
examples you have in your dataset.

The shape of x_train is: (97,)

The shape of y_train is: (97,)

Number of training examples (m): 97

The city population array has 97 data points, and the monthly average profits also
has 97 data points. These are NumPy 1D arrays.

Visualize your data

It is often useful to understand the data by visualizing it.

• For this dataset, you can use a scatter plot to visualize the data, since it has
only two properties to plot (profit and population).

• Many other problems that you will encounter in real life have more than two
properties (for example, population, average household income, monthly
profits, monthly sales).When you have more than two properties, you can still
use a scatter plot to see the relationship between each pair of properties.

In [5]:
print ('The shape of x_train is:', x_train.shape)

print ('The shape of y_train is: ', y_train.shape)

print ('Number of training examples (m):', len(x_train))

In [6]:
Create a scatter plot of the data. To change the markers to red "x",

we used the 'marker' and 'c' parameters

plt.scatter(x_train, y_train, marker='x', c='r')

Set the title

plt.title("Profits vs. Population per city")

Set the y-axis label

plt.ylabel('Profit in $10,000')

Set the x-axis label

plt.xlabel('Population of City in 10,000s')

plt.show()

Your goal is to build a linear regression model to fit this data.

• With this model, you can then input a new city's population, and have the
model estimate your restaurant's potential monthly profits for that city.

4 - Refresher on linear regression
In this practice lab, you will fit the linear regression parameters to your
dataset.

• The model function for linear regression, which is a function that maps from
x (city population) to y (your restaurant's monthly profit for that city) is

represented as

• To train a linear regression model, you want to find the best parameters
that fit your dataset.

▪ To compare how one choice of is better or worse than another
choice, you can evaluate it with a cost function

◦ is a function of . That is, the value of the cost
depends on the value of .

▪ The choice of that fits your data the best is the one that has the
smallest cost .

• To find the values that gets the smallest possible cost , you can
use a method called gradient descent.

▪ With each step of gradient descent, your parameters come closer
to the optimal values that will achieve the lowest cost .

• The trained linear regression model can then take the input feature (city
population) and output a prediction (predicted monthly profit for a
restaurant in that city).

(w, b)

f

w,b

(x) = wx + b

(w, b)

(w, b)

J(w, b)

J (w, b) J(w, b)

(w, b)

(w, b)

J(w, b)

(w, b) J(w, b)

(w, b)

J(w, b)

x

f

w,b

(x)

5 - Compute Cost
Gradient descent involves repeated steps to adjust the value of your parameter

 to gradually get a smaller and smaller cost .

• At each step of gradient descent, it will be helpful for you to monitor your
progress by computing the cost as gets updated.

• In this section, you will implement a function to calculate so that you
can check the progress of your gradient descent implementation.

Cost function

As you may recall from the lecture, for one variable, the cost function for linear
regression is defined as

• You can think of as the model's prediction of your restaurant's
profit, as opposed to , which is the actual profit that is recorded in the
data.

• is the number of training examples in the dataset

Model prediction

• For linear regression with one variable, the prediction of the model for an
example is representented as:

This is the equation for a line, with an intercept and a slope

Implementation

Please complete the compute_cost() function below to compute the cost
.

Exercise 1

Complete the compute_cost below to:

• Iterate over the training examples, and for each example, compute:

▪ The prediction of the model for that example

▪ The cost for that example

(w, b) J(w, b)

J(w, b) (w, b)

J(w, b)

J(w, b)

J(w, b) =

1

2m

m−1

∑

i=0

(f

w,b

(x

(i)

) − y

(i)

)

2

f

w,b

(x

(i)

)

y

(i)

m

f

w,b

x

(i)

f

w,b

(x

(i)

) = wx

(i)

+ b

b w

J(w, b)

f

wb

(x

(i)

) = wx

(i)

+ b

• Return the total cost over all examples

• Here, is the number of training examples and is the summation
operator

If you get stuck, you can check out the hints presented after the cell below to help
you with the implementation.

Click for hints

• You can represent a summation operator eg: in code as follows:

h = 0

for i in range(m):

 h = h + 2*i

```

cost

(i)

= (f

wb

− y

(i)

)

2

J(w, b) =

1

2m

m−1

∑

i=0

cost

(i)

m ∑

In [13]:
# UNQ_C1

# GRADED FUNCTION: compute_cost

def compute_cost(x, y, w, b): 

"""

    Computes the cost function for linear regression.

    Args:

        x (ndarray): Shape (m,) Input to the model (Population of cities) 

        y (ndarray): Shape (m,) Label (Actual profits for the cities)

        w, b (scalar): Parameters of the model

    Returns

        total_cost (float): The cost of using w,b as the parameters for linear regression

               to fit the data points in x and y

    """

# number of training examples

m = x.shape[0] 

    

# You need to return this variable correctly

total_cost = 0

### START CODE HERE ###

cost=0

for i in range(m):

f_wb = w*x[i]+b

cost += (f_wb - y[i])**2

    

total_cost = cost/(2*m)

    

### END CODE HERE ### 

return total_cost

h =

m−1

∑

i=0

2i



```

• In this case, you can iterate over all the examples in x using a for loop and
add the cost from each iteration to a variable (cost_sum) initialized
outside the loop.

• Then, you can return the total_cost as cost_sum divided by 2m .

<details>

 <summary> Click

for more hints</summary>

* Here's how you can structure the overall implementation

for this function

```python 

def compute_cost(x, y, w, b):

    # number of training examples

    m = x.shape[0] 

    # You need to return this variable correctly

    total_cost = 0

    ### START CODE HERE ###  

    # Variable to keep track of sum of cost from each 

example

    cost_sum = 0

    # Loop over training examples

    for i in range(m):

        # Your code here to get the prediction f_wb for the 

ith example

        f_wb = 

        # Your code here to get the cost associated with 

the ith example

        cost = 

        # Add to sum of cost for each example

        cost_sum = cost_sum + cost 

    # Get the total cost as the sum divided by (2*m)

    total_cost = (1 / (2 * m)) * cost_sum

    ### END CODE HERE ### 

    return total_cost

```

If you're still stuck, you can check the hints presented

below to figure out how to calculate `f_wb` and `cost`.

<details>

 <summary>Hint to

calculate f_wb</summary>

     For scalars a, b and c

(<code>x[i]</code>, <code>w</code> and <code>b</code> are

all scalars), you can calculate the equation $h = ab + c$

all scalars), you can calculate the equation $h = ab + c$

in code as <code>h = a * b + c</code>

 <details>

 <summary> 

  More hints to calculate f</summary>

     You can compute f_wb as <code>f_wb

= w * x[i] + b </code>

 </details>

</details>

 <details>

 <summary>Hint to

calculate cost</summary>

     You can calculate the square of a

variable z as z**2

 <details>

 <summary> 

  More hints to calculate cost</summary>

     You can compute cost as <code>cost

= (f_wb - y[i]) ** 2</code>

 </details>

</details>

</details>

You can check if your implementation was correct by running the following test
code:

<class 'numpy.float64'>

Cost at initial w (zeros): 75.203

All tests passed!

Expected Output:

Cost at initial w (zeros): 75.203

6 - Gradient descent
In this section, you will implement the gradient for parameters for linear
regression.

As described in the lecture videos, the gradient descent algorithm is:

In [14]:
Compute cost with some initial values for paramaters w, b

initial_w = 2

initial_b = 1

cost = compute_cost(x_train, y_train, initial_w, initial_b)

print(type(cost))

print(f'Cost at initial w (zeros): {cost:.3f}')

Public tests

from public_tests import *

compute_cost_test(compute_cost)

w, b

As described in the lecture videos, the gradient descent algorithm is:

where, parameters are both updated simultaniously and where

• m is the number of training examples in the dataset

• is the model's prediction, while , is the target value

You will implement a function called compute_gradient which calculates ,

Exercise 2

Please complete the compute_gradient function to:

• Iterate over the training examples, and for each example, compute:

▪ The prediction of the model for that example

▪ The gradient for the parameters from that example

• Return the total gradient update from all the examples

▪ Here, is the number of training examples and is the summation
operator

repeat until convergence: {

b := b − α

∂J(w, b)

∂b

w := w − α

∂J(w, b)

∂w

}

(1)

w, b

∂J(w, b)

∂b

=

1

m

m−1

∑

i=0

(f

w,b

(x

(i)

) − y

(i)

) (2)

∂J(w, b)

∂w

=

1

m

m−1

∑

i=0

(f

w,b

(x

(i)

) − y

(i)

)x

(i)

(3)

f

w,b

(x

(i)

) y

(i)

∂J(w)

∂w

∂J(w)

∂b

f

wb

(x

(i)

) = wx

(i)

+ b

w, b

∂J(w, b)

∂b

(i)

= (f

w,b

(x

(i)

) − y

(i)

)

∂J(w, b)

∂w

(i)

= (f

w,b

(x

(i)

) − y

(i)

)x

(i)

∂J(w, b)

∂b

=

1

m

m−1

∑

i=0

∂J(w, b)

∂b

(i)

∂J(w, b)

∂w

=

1

m

m−1

∑

i=0

∂J(w, b)

∂w

(i)

m ∑

If you get stuck, you can check out the hints presented after the cell below to help
you with the implementation.

Click for hints

* You can represent a summation operator eg: $h =

\sum\limits_{i = 0}^{m-1} 2i$ in code as follows:

 ```python 

h = 0

for i in range(m):

    h = h + 2*i

```

* In this case, you can iterate over all the examples in

`x` using a for loop and for each example, keep adding the

gradient from that example to the variables `dj_dw` and

`dj_db` which are initialized outside the loop.

• Then, you can return dj_dw and dj_db both divided by m .

<details>

 <summary> Click

for more hints</summary>

In [15]:
UNQ_C2

GRADED FUNCTION: compute_gradient

def compute_gradient(x, y, w, b):

"""

 Computes the gradient for linear regression

 Args:

 x (ndarray): Shape (m,) Input to the model (Population of cities)

 y (ndarray): Shape (m,) Label (Actual profits for the cities)

 w, b (scalar): Parameters of the model

 Returns

 dj_dw (scalar): The gradient of the cost w.r.t. the parameters w

 dj_db (scalar): The gradient of the cost w.r.t. the parameter b

 """

Number of training examples

m = x.shape[0]

You need to return the following variables correctly

dj_dw = 0

dj_db = 0

START CODE HERE ###

for i in range(m):

f_wb = w*x[i]+b

dj_db += f_wb - y[i]

dj_dw += (f_wb - y[i])*x[i]

dj_dw /= m

dj_db /= m

END CODE HERE ###

return dj_dw, dj_db

for more hints</summary>

* Here's how you can structure the overall implementation

for this function

```python 

def compute_gradient(x, y, w, b): 

    """

    Computes the gradient for linear regression 

    Args:

      x (ndarray): Shape (m,) Input to the model 

(Population of cities) 

      y (ndarray): Shape (m,) Label (Actual profits for the 

cities)

      w, b (scalar): Parameters of the model  

    Returns

      dj_dw (scalar): The gradient of the cost w.r.t. the 

parameters w

      dj_db (scalar): The gradient of the cost w.r.t. the 

parameter b     

     """

    # Number of training examples

    m = x.shape[0]

    # You need to return the following variables correctly

    dj_dw = 0

    dj_db = 0

    ### START CODE HERE ### 

    # Loop over examples

    for i in range(m):  

        # Your code here to get prediction f_wb for the ith 

example

        f_wb = 

        # Your code here to get the gradient for w from the 

ith example 

        dj_dw_i = 

        # Your code here to get the gradient for b from the 

ith example 

        dj_db_i = 

        # Update dj_db : In Python, a += 1  is the same as 

a = a + 1

        dj_db += dj_db_i

        # Update dj_dw

        dj_dw += dj_dw_i

    # Divide both dj_dw and dj_db by m

    dj_dw = dj_dw / m

    dj_db = dj_db / m

    ### END CODE HERE ### 

    return dj_dw, dj_db

```


If you're still stuck, you can check the hints presented

below to figure out how to calculate `f_wb` and `cost`.

<details>

 <summary>Hint to

calculate f_wb</summary>

     You did this in the previous exercise!

For scalars a, b and c (<code>x[i]</code>,

<code>w</code> and <code>b</code> are all scalars), you can

calculate the equation $h = ab + c$ in code as <code>h = a

* b + c</code>

 <details>

 <summary> 

  More hints to calculate f</summary>

     You can compute f_wb as <code>f_wb

= w * x[i] + b </code>

 </details>

</details>

<details>

 <summary>Hint to

calculate dj_dw_i</summary>

     For scalars a, b and c

(<code>f_wb</code>, <code>y[i]</code> and <code>x[i]</code>

are all scalars), you can calculate the equation $h = (a -

b)c$ in code as <code>h = (a-b)*c</code>

 <details>

 <summary> 

  More hints to calculate f</summary>

     You can compute dj_dw_i as

<code>dj_dw_i = (f_wb - y[i]) * x[i] </code>

 </details>

</details>

<details>

 <summary>Hint to

calculate dj_db_i</summary>

     You can compute dj_db_i as <code>

dj_db_i = f_wb - y[i] </code>

</details>

</details>

Run the cells below to check your implementation of the compute_gradient
function with two different initializations of the parameters , .w b

In [16]:
Compute and display gradient with w initialized to zeroes

initial_w = 0

initial_b = 0

tmp_dj_dw, tmp_dj_db = compute_gradient(x_train, y_train, initial_w, initial_b

print('Gradient at initial w, b (zeros):', tmp_dj_dw, tmp_dj_db)

compute_gradient_test(compute_gradient)

Gradient at initial w, b (zeros): -65.32884974555672 -5.83913505154639

Using X with shape (4, 1)

All tests passed!

Now let's run the gradient descent algorithm implemented above on our dataset.

Expected Output:

Gradient at initial , b (zeros) -65.32884975 -5.83913505154639

Gradient at test w, b: -47.41610118114435 -4.007175051546391

Expected Output:

Gradient at test w -47.41610118 -4.007175051546391

2.6 Learning parameters using batch gradient descent

You will now find the optimal parameters of a linear regression model by using
batch gradient descent. Recall batch refers to running all the examples in one
iteration.

• You don't need to implement anything for this part. Simply run the cells
below.

• A good way to verify that gradient descent is working correctly is to look

at the value of and check that it is decreasing with each step.

• Assuming you have implemented the gradient and computed the cost
correctly and you have an appropriate value for the learning rate alpha,

 should never increase and should converge to a steady value by the
end of the algorithm.

compute_gradient_test(compute_gradient)

In [17]:
Compute and display cost and gradient with non-zero w

test_w = 0.2

test_b = 0.2

tmp_dj_dw, tmp_dj_db = compute_gradient(x_train, y_train, test_w, test_b)

print('Gradient at test w, b:', tmp_dj_dw, tmp_dj_db)

J(w, b)

J(w, b)

In [18]:
def gradient_descent(x, y, w_in, b_in, cost_function, gradient_function, alpha

"""

 Performs batch gradient descent to learn theta. Updates theta by taking

 num_iters gradient steps with learning rate alpha

 Args:

 x : (ndarray): Shape (m,)

 y : (ndarray): Shape (m,)

 w_in, b_in : (scalar) Initial values of parameters of the model

 cost_function: function to compute cost

 gradient_function: function to compute the gradient

 alpha : (float) Learning rate

 alpha : (float) Learning rate

 num_iters : (int) number of iterations to run gradient descent

 Returns

 w : (ndarray): Shape (1,) Updated values of parameters of the model after

 running gradient descent

 b : (scalar) Updated value of parameter of the model after

 running gradient descent

 """

number of training examples

m = len(x)

An array to store cost J and w's at each iteration — primarily for graphing later

J_history = []

w_history = []

w = copy.deepcopy(w_in) #avoid modifying global w within function

b = b_in

for i in range(num_iters):

Calculate the gradient and update the parameters

dj_dw, dj_db = gradient_function(x, y, w, b)

Update Parameters using w, b, alpha and gradient

w = w - alpha * dj_dw

b = b - alpha * dj_db

Save cost J at each iteration

if i<100000: # prevent resource exhaustion

cost = cost_function(x, y, w, b)

J_history.append(cost)

