
Optional Lab: Cost Function

Goals

In this lab you will:

• you will implement and explore the cost function for linear regression with one

variable.

Tools

In this lab we will make use of:

• NumPy, a popular library for scientific computing

• Matplotlib, a popular library for plotting data

• local plotting routines in the lab_utils_uni.py file in the local directory

In [8]:

Problem Statement

You would like a model which can predict housing prices given the size of the house.

Let's use the same two data points as before the previous lab- a house with 1000 square

feet sold for $300,000 and a house with 2000 square feet sold for $500,000.

Size (1000 sqft) Price (1000s of dollars)

1 300

2 500

In [9]:

import numpy as np
%matplotlib widget
import matplotlib.pyplot as plt
from lab_utils_uni import plt_intuition, plt_stationary, plt_update_onclick
plt.style.use('./deeplearning.mplstyle')

x_train = np.array([1.0, 2.0]) #(size in 1000 square feet)
y_train = np.array([300.0, 500.0]) #(price in 1000s of dollars)

1
2
3
4
5
6

1
2
3

http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W1_Lab03_Cost_function_Soln.ipynb#Optional--Lab:-Cost-Function
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W1_Lab03_Cost_function_Soln.ipynb#Optional--Lab:-Cost-Function
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W1_Lab03_Cost_function_Soln.ipynb#Goals
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W1_Lab03_Cost_function_Soln.ipynb#Goals
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W1_Lab03_Cost_function_Soln.ipynb#Tools
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W1_Lab03_Cost_function_Soln.ipynb#Tools
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W1_Lab03_Cost_function_Soln.ipynb#Problem-Statement
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W1_Lab03_Cost_function_Soln.ipynb#Problem-Statement

Computing Cost

The term 'cost' in this assignment might be a little confusing since the data is housing cost.

Here, cost is a measure how well our model is predicting the target price of the house. The

term 'price' is used for housing data.

The equation for cost with one variable is:

where

• is our prediction for example using parameters .

• is the squared difference between the target value and the

prediction.

• These differences are summed over all the examples and divided by 2m to produce

the cost, .

Note, in lecture summation ranges are typically from 1 to m, while code

will be from 0 to m-1.

�(�, �) = (() −1
2� ∑

�=0

�−1
��,� �

(�) �(�))2 (1)

() = � + ���,� �
(�) �(�) (2)

()��,� �
(�) � �, �

(() −��,� �
(�) �(�))2

�

�(�, �)

The code below calculates cost by looping over each example. In each loop:

• f_wb , a prediction is calculated

• the difference between the target and the prediction is calculated and squared.

• this is added to the total cost.

In [3]:

Cost Function Intuition

Your goal is to find a model , with parameters , which will accurately

predict house values given an input . The cost is a measure of how accurate the model is

on the training data.

The cost equation (1) above

(�) = �� + ���,� �, �
�

def compute_cost(x, y, w, b):
number of training examples
m = x.shape[0]

cost_sum = 0
for i in range(m):

f_wb = w * x[i] + b

cost = (f_wb - y[i]) ** 2
cost_sum = cost_sum + cost
total_cost = (1 / (2 * m)) * cost_sum

return total_cost

1
2
3
4
5
6
7
8
9

10
11
12
13
14

http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W1_Lab03_Cost_function_Soln.ipynb#Computing-Cost
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W1_Lab03_Cost_function_Soln.ipynb#Computing-Cost
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W1_Lab03_Cost_function_Soln.ipynb#Cost-Function-Intuition
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W1_Lab03_Cost_function_Soln.ipynb#Cost-Function-Intuition

shows that if and can be

selected such that the

predictions match the

target data , the

 term will be

zero and the cost minimized. In

this simple two point example,

you can achieve this!

In the previous lab, you

determined that

provided an optimal solution so

let's set to 100 and focus on .

Below, use the slider control to select the value of that minimizes cost. It can take a few

� �

(�)��,�
�

(() −��,� �
(�) �(�))2

� = 100

� �

�

In [4]:

The plot contains a few points that are worth mentioning.

• cost is minimized when , which matches results from the previous lab

• Because the difference between the target and pediction is squared in the cost

equation, the cost increases rapidly when is either too large or too small.

• Using the w and b selected by minimizing cost results in a line which is a perfect fit to

the data.

� = 200

�

Cost Function Visualization- 3D

You can see how cost varies with respect to both w and b by plotting in 3D or using a

contour plot.

It is worth noting that some of the plotting in this course can become quite involved. The

plotting routines are provided and while it can be instructive to read through the code to

become familiar with the methods, it is not needed to complete the course successfully. The

routines are in lab_utils_uni.py in the local directory.

Larger Data Set

It is instructive to view a scenario with a few more data points. This data set includes data

points that do not fall on the same line. What does that mean for the cost equation? Can we

find , and that will give us a cost of 0?� �

w 150

A Jupyter widget could not be displayed because the widget state could not be found. This

could happen if the kernel storing the widget is no longer available, or if the widget state

was not saved in the notebook. You may be able to create the widget by running the

appropriate cells.

plt_intuition(x_train,y_train)1
2

http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W1_Lab03_Cost_function_Soln.ipynb#Cost-Function-Visualization--3D
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W1_Lab03_Cost_function_Soln.ipynb#Cost-Function-Visualization--3D
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W1_Lab03_Cost_function_Soln.ipynb#Larger-Data-Set
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W1_Lab03_Cost_function_Soln.ipynb#Larger-Data-Set

In [5]:

In the contour plot, click on a point to select w and b to achieve the lowest cost. Use the

contours to guide your selections. Note, it can take a few seconds to update the graph.

In [6]:

Above, note the dashed lines in the left plot. These represent the portion of the cost

contributed by each example in your training set. In this case, values of approximately

 and provide low cost. Note that, because our training examples are not

on a line, the minimum cost is not zero.

� = 209 � = 2.4

Convex Cost surface

The fact that the cost function squares the loss ensures that the 'error surface' is convex like

a soup bowl. It will always have a minimum that can be reached by following the gradient in

all dimensions. In the previous plot, because the and dimensions scale differently, this

is not easy to recognize. The following plot, where and are symmetric, was shown in

lecture:

� �

� �

Congratulations!
You have learned the following:

• The cost equation provides a measure of how well your predictions match your training

data.

• Minimizing the cost can provide optimal values of , .� �

In []:

A Jupyter widget could not be displayed because the widget state could not be found. This

could happen if the kernel storing the widget is no longer available, or if the widget state was

not saved in the notebook. You may be able to create the widget by running the appropriate

cells.

x_train = np.array([1.0, 1.7, 2.0, 2.5, 3.0, 3.2])
y_train = np.array([250, 300, 480, 430, 630, 730,])

plt.close('all')
fig, ax, dyn_items = plt_stationary(x_train, y_train)
updater = plt_update_onclick(fig, ax, x_train, y_train, dyn_items)

soup_bowl()

1
2
3

1
2
3
4

1
2

1

http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W1_Lab03_Cost_function_Soln.ipynb#Convex-Cost-surface
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W1_Lab03_Cost_function_Soln.ipynb#Convex-Cost-surface
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W1_Lab03_Cost_function_Soln.ipynb#Congratulations!
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W1_Lab03_Cost_function_Soln.ipynb#Congratulations!

