
Goals

In this lab you will:

• Learn to implement the model for linear regression with one variable��,�

Notation

Here is a summary of some of the notation you will encounter.

General

Notation
Description

Python (if
applicable)

scalar, non bold

vector, bold

Regression

Training Example feature values (in this lab - Size (1000 sqft)) x_train

Training Example targets (in this lab Price (1000s of dollars)) y_train

, Training Example x_i , y_i

m Number of training examples m

parameter: weight w

parameter: bias b

The result of the model evaluation at parameterized by :
f_wb

�

�

�

�

�(�) �(�) ��ℎ

�

�

()��,� �
(�) �(�) �, �

() = � + ���,� �
(�) �(�)

Tools

In this lab you will make use of:

• NumPy, a popular library for scientific computing

• Matplotlib, a popular library for plotting data

In [1]:

Problem Statement
As in the lecture, you will use

the motivating example of

housing price prediction.

This lab will use a simple data

set with only two data points -

a house with 1000 square

import numpy as np
import matplotlib.pyplot as plt
plt style use('./deeplearning.mplstyle')

1
2
3

http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W1_Lab02_Model_Representation_Soln.ipynb#Goals
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W1_Lab02_Model_Representation_Soln.ipynb#Goals
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W1_Lab02_Model_Representation_Soln.ipynb#Notation
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W1_Lab02_Model_Representation_Soln.ipynb#Notation
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W1_Lab02_Model_Representation_Soln.ipynb#Tools
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W1_Lab02_Model_Representation_Soln.ipynb#Tools
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W1_Lab02_Model_Representation_Soln.ipynb#Problem-Statement
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W1_Lab02_Model_Representation_Soln.ipynb#Problem-Statement

feet(sqft) sold for $300,000

and a house with 2000 square

feet sold for $500,000. These

two points will constitute our

data or training set. In this lab,

the units of size are 1000 sqft

and the units of price are

1000s of dollars.

Size (1000
sqft)

Price (1000s of
dollars)

1.0 300

2.0 500

You would like to fit a linear regression model (shown above as the blue straight line)

through these two points, so you can then predict price for other houses - say, a house with

Please run the following code cell to create your x_train and y_train variables. The

data is stored in one-dimensional NumPy arrays.

In [2]:

Note: The course will frequently utilize the python 'f-string' output formatting

described here (https://docs.python.org/3/tutorial/inputoutput.html) when

printing. The content between the curly braces is evaluated when producing

the output.

Number of training examples m

You will use m to denote the number of training examples. Numpy arrays have a .shape

parameter. x_train.shape returns a python tuple with an entry for each dimension.

x_train.shape[0] is the length of the array and number of examples as shown below.

In [3]:

One can also use the Python len() function as shown below.

x_train = [1. 2.]
y_train = [300. 500.]

x_train.shape: (2,)
Number of training examples is: 2

x_train is the input variable (size in 1000 square feet)
y_train is the target (price in 1000s of dollars)
x_train = np.array([1.0, 2.0])
y_train = np.array([300.0, 500.0])
print(f"x_train = {x_train}")
print(f"y_train = {y_train}")

m is the number of training examples
print(f"x_train.shape: {x_train.shape}")
m = x_train.shape[0]
print(f"Number of training examples is: {m}")

1
2
3
4
5
6

1
2
3
4

https://docs.python.org/3/tutorial/inputoutput.html
https://docs.python.org/3/tutorial/inputoutput.html
https://docs.python.org/3/tutorial/inputoutput.html
https://docs.python.org/3/tutorial/inputoutput.html
https://docs.python.org/3/tutorial/inputoutput.html
https://docs.python.org/3/tutorial/inputoutput.html
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W1_Lab02_Model_Representation_Soln.ipynb#Number-of-training-examples-m
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W1_Lab02_Model_Representation_Soln.ipynb#Number-of-training-examples-m

In [4]:

Training example x_i, y_i

You will use (x , y) to denote the training example. Since Python is zero indexed,

(x , y) is (1.0, 300.0) and (x , y) is (2.0, 500.0).

To access a value in a Numpy array, one indexes the array with the desired offset. For

example the syntax to access location zero of x_train is x_train[0] . Run the next

code block below to get the training example.

(�) (�) ��ℎ

(0) (0) (1) (1)

��ℎ

In [5]:

Plotting the data

You can plot these two points using the scatter() function in the matplotlib library, as

shown in the cell below.

• The function arguments marker and c show the points as red crosses (the default is

blue dots).

You can use other functions in the matplotlib library to set the title and labels to display

Number of training examples is: 2

(x^(0), y^(0)) = (1.0, 300.0)

m is the number of training examples
m = len(x_train)
print(f"Number of training examples is: { }")

i = 0 # Change this to 1 to see (x^1, y^1)

x_i = x_train[i]
y_i = y_train[i]
print(f"(x^({i}), y^({i})) = ({x_i} {y_i})")

1
2
3

1
2
3
4
5

http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W1_Lab02_Model_Representation_Soln.ipynb#Training-example-x_i,-y_i
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W1_Lab02_Model_Representation_Soln.ipynb#Training-example-x_i,-y_i
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W1_Lab02_Model_Representation_Soln.ipynb#Plotting-the-data
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W1_Lab02_Model_Representation_Soln.ipynb#Plotting-the-data

In [6]:

Model function

As described in lecture, the

model function for linear

regression (which is a function

that maps from x to y) is

represented as

The formula above is how you can represent straight lines - different values of and give

you different straight lines on the plot.

Let's try to get a better intuition for this through the code blocks below. Let's start with

 and .

Note: You can come back to this cell to adjust the model's w and b parameters

() = � + ���,� �
(�) �(�) (1)

� �

� = 100 � = 100

Plot the data points
plt.scatter(x_train, y_train, marker='x', c='r')
Set the title
plt.title("Housing Prices")
Set the y-axis label
plt.ylabel('Price (in 1000s of dollars)')
Set the x-axis label
plt.xlabel('Size (1000 sqft)')
plt show()

1
2
3
4
5
6
7
8
9

http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W1_Lab02_Model_Representation_Soln.ipynb#Model-function
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W1_Lab02_Model_Representation_Soln.ipynb#Model-function

In [7]:

Now, let's compute the value of for your two data points. You can explicitly write

this out for each data point as -

for , f_wb = w * x[0] + b

for , f_wb = w * x[1] + b

For a large number of data points, this can get unwieldy and repetitive. So instead, you can

calculate the function output in a for loop as shown in the compute_model_output

function below.

Note: The argument description (ndarray (m,)) describes a Numpy

n-dimensional array of shape (m,). (scalar) describes an argument

without dimensions, just a magnitude.

Note: np.zero(n) will return a one-dimensional numpy array with

entries

()��,� �
(�)

�(0)

�(1)

�

In [8]:

Now let's call the compute_model_output function and plot the output..

w: 100
b: 100

w = 100
b = 100
print(f"w: {w}")
print(f"b: {b}")

def compute_model_output(x, w, b):
"""

 Computes the prediction of a linear model
 Args:
 x (ndarray (m,)): Data, m examples
 w,b (scalar) : model parameters
 Returns
 y (ndarray (m,)): target values
 """

m = x.shape[0]
f_wb = np.zeros(m)
for i in range(m):

f_wb[i] = w * x[i] + b

return f_wb

1
2
3
4

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

In [9]:

As you can see, setting and does not result in a line that fits our data.

Challenge

Try experimenting with different values of and . What should the values be for a line that

fits our data?

Tip:

You can use your mouse to click on the green "Hints" below to reveal some hints for

choosing b and w.

� = 100 � = 100

� �

Hints

Prediction

Now that we have a model, we can use it to make our original prediction. Let's predict the

price of a house with 1200 sqft. Since the units of are in 1000's of sqft, is 1.2.� �

tmp_f_wb = compute_model_output(x_train, w, b,)

Plot our model prediction
plt.plot(x_train, tmp_f_wb, c='b',label='Our Prediction')

Plot the data points
plt.scatter(x_train, y_train, marker='x', c='r',label='Actual Values')

Set the title
plt.title("Housing Prices")
Set the y-axis label
plt.ylabel('Price (in 1000s of dollars)')
Set the x-axis label
plt.xlabel('Size (1000 sqft)')
plt.legend()
plt show()

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W1_Lab02_Model_Representation_Soln.ipynb#Challenge
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W1_Lab02_Model_Representation_Soln.ipynb#Challenge
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W1_Lab02_Model_Representation_Soln.ipynb#Tip:
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W1_Lab02_Model_Representation_Soln.ipynb#Tip:
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W1_Lab02_Model_Representation_Soln.ipynb#Prediction
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W1_Lab02_Model_Representation_Soln.ipynb#Prediction

In [10]:

Congratulations!
In this lab you have learned:

• Linear regression builds a model which establishes a relationship between features and

targets

▪ In the example above, the feature was house size and the target was house price

▪ for simple linear regression, the model has two parameters and whose values

are 'fit' using training data.

▪ once a model's parameters have been determined, the model can be used to make

predictions on novel data.

� �

In []:

$340 thousand dollars

w = 200
b = 100
x_i = 1.2
cost_1200sqft = w * x_i + b

print(f"${cost_1200sqft .0f} thousand dollars")

1
2
3
4
5
6

1

http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W1_Lab02_Model_Representation_Soln.ipynb#Congratulations!
http://localhost:8888/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S1/Files/home/jovyan/work/C1_W1_Lab02_Model_Representation_Soln.ipynb#Congratulations!

