
Optional Lab - Softmax Function
In this lab, we will explore the softmax function. This function is used in both Softmax

Regression and in Neural Networks when solving Multiclass Classification problems.

In [5]:

Note: Normally, in this course, the notebooks use the convention of starting

counts with 0 and ending with N-1, , while lectures start with 1 and

end with N, . This is because code will typically start iteration with 0

while in lecture, counting 1 to N leads to cleaner, more succinct equations.

This notebook has more equations than is typical for a lab and thus will

break with the convention and will count 1 to N.

∑�−1�=0
∑��=1

Softmax Function

In both softmax regression and neural networks with Softmax outputs, N outputs are

generated and one output is selected as the predicted category. In both cases a vector is

generated by a linear function which is applied to a softmax function. The softmax function

converts into a probability distribution as described below. After applying softmax, each

output will be between 0 and 1 and the outputs will add to 1, so that they can be interpreted

as probabilities. The larger inputs will correspond to larger output probabilities.

�

�

import numpy as np
import matplotlib.pyplot as plt
plt.style.use('./deeplearning.mplstyle')
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from IPython.display import display, Markdown, Latex
from sklearn.datasets import make_blobs
%matplotlib widget
from matplotlib.widgets import Slider
from lab_utils_common import dlc
from lab_utils_softmax import plt_softmax
import logging
logging.getLogger("tensorflow").setLevel(logging.ERROR)
tf.autograph.set_verbosity(0)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W2_SoftMax.ipynb#Optional-Lab---Softmax-Function
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W2_SoftMax.ipynb#Optional-Lab---Softmax-Function
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W2_SoftMax.ipynb#Softmax-Function
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W2_SoftMax.ipynb#Softmax-Function

The softmax function can be written:

The output is a vector of length N, so for softmax regression, you could also write:

=��
���

∑��=1 ���
(1)

�

�(�) = =



� (� = 1|�;�, �)

⋮
� (� = �|�;�, �)





1
∑��=1 ���




��1

⋮
���



 (2)

Which shows the output is a vector of probabilities. The first entry is the probability the input

is the first category given the input and parameters and .

Let's create a NumPy implementation:

� � �

In [6]:

Below, vary the values of the z inputs using the sliders.

In [7]:

As you are varying the values of the z's above, there are a few things to note:

• the exponential in the numerator of the softmax magnifies small differences in the

values

• the output values sum to one

• the softmax spans all of the outputs. A change in z0 for example will change the

Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home',
'home'), ('Back', 'Back to previous …

def my_softmax(z):
ez = np.exp(z) #element-wise exponenial
sm = ez/np.sum(ez)
return(sm)

plt.close("all")
plt_softmax(my_softmax)

1
2
3
4
5
6
7

1
2
3
4
5

values of a0 - a3 . Compare this to other activations such as ReLU or Sigmoid which

have a single input and single output.

Cost

The loss function associated with Softmax, the cross-entropy loss, is:

Where y is the target category for this example and is the output of a softmax function. In

particular, the values in are probabilities that sum to one.

Recall: In this course, Loss is for one example while Cost covers all

examples.

Note in (3) above, only the line that corresponds to the target contributes to the loss, other

lines are zero. To write the cost equation we need an 'indicator function' that will be 1 when

the index matches the target and zero otherwise.

Now the cost is:

Where is the number of examples, is the number of outputs. This is the average of all

the losses.

�(�, �) =



−���(),�1

−���(),��

if � = 1.
⋮
if � = �

(3)

�

�

1{� == �} == { 1,0, if � == �.otherwise.

�(�, �) = − [1 { == �} log]1
� ∑

�=1

�

∑
�=1

�

�(�)
��
(�)
�

∑��=1 ��
(�)
�

(4)

� �

Tensorflow

This lab will discuss two ways of implementing the softmax, cross-entropy loss in

Tensorflow, the 'obvious' method and the 'preferred' method. The former is the most

straightforward while the latter is more numerically stable.

Let's start by creating a dataset to train a multiclass classification model.

http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W2_SoftMax.ipynb#Cost
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W2_SoftMax.ipynb#Cost
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W2_SoftMax.ipynb#Tensorflow
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W2_SoftMax.ipynb#Tensorflow

In [8]:

The Obvious organization

The model below is implemented with the softmax as an activation in the final Dense layer.

The loss function is separately specified in the compile directive.

The loss function is SparseCategoricalCrossentropy . This loss is described in (3)

above. In this model, the softmax takes place in the last layer. The loss function takes in the

softmax output which is a vector of probabilities.

In [9]:

Epoch 1/10
63/63 [==============================] - 0s 979us/step - loss: 0.8852
Epoch 2/10
63/63 [==============================] - 0s 1ms/step - loss: 0.3930
Epoch 3/10
63/63 [==============================] - 0s 1ms/step - loss: 0.1605
Epoch 4/10
63/63 [==============================] - 0s 939us/step - loss: 0.0920
Epoch 5/10
63/63 [==============================] - 0s 1ms/step - loss: 0.0691
Epoch 6/10
63/63 [==============================] - 0s 1ms/step - loss: 0.0572
Epoch 7/10
63/63 [==============================] - 0s 1ms/step - loss: 0.0504
Epoch 8/10
63/63 [==============================] - 0s 983us/step - loss: 0.0467
Epoch 9/10
63/63 [==============================] - 0s 1ms/step - loss: 0.0431
Epoch 10/10
63/63 [==============================] - 0s 1ms/step - loss: 0.0404

make dataset for example
centers = [[-5, 2], [-2, -2], [1, 2], [5, -2]]
X_train, y_train = make_blobs(n_samples=2000, centers=centers, cluster_std

model = Sequential(
 [

Dense(25, activation = 'relu'),
Dense(15, activation = 'relu'),
Dense(4, activation = 'softmax') # < softmax activation here

]
)
model.compile(

loss=tf.keras.losses.SparseCategoricalCrossentropy(),
optimizer=tf.keras.optimizers.Adam(0.001),

)

model.fit(
X_train,y_train,
epochs=10

)

1
2
3
4
5
6

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W2_SoftMax.ipynb#The-Obvious-organization
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W2_SoftMax.ipynb#The-Obvious-organization

Because the softmax is integrated into the output layer, the output is a vector of

probabilities.

In [10]:

Preferred

Recall from lecture, more

stable and accurate results

can be obtained if the

softmax and loss are

combined during training.

This is enabled by the

'preferred' organization

shown here.

In the preferred organization the final layer has a linear activation. For historical reasons, the

outputs in this form are referred to as logits. The loss function has an additional argument:

from_logits = True . This informs the loss function that the softmax operation should be

included in the loss calculation. This allows for an optimized implementation.

[[1.08e-03 9.91e-04 9.80e-01 1.77e-02]
 [9.96e-01 4.45e-03 1.42e-05 1.91e-06]]
largest value 0.999998 smallest value 2.4965266e-10

p_nonpreferred = model.predict(X_train)
print(p_nonpreferred [:2])
print("largest value", np.max(p_nonpreferred), "smallest value", np.min

1
2
3
4
5
6

http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W2_SoftMax.ipynb#Preferred-
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W2_SoftMax.ipynb#Preferred-

In [11]:

Output Handling

Notice that in the preferred model, the outputs are not probabilities, but can range from large

negative numbers to large positive numbers. The output must be sent through a softmax

when performing a prediction that expects a probability. Let's look at the preferred model

outputs:

In [12]:

Epoch 1/10
63/63 [==============================] - 0s 1ms/step - loss: 1.0617
Epoch 2/10
63/63 [==============================] - 0s 1ms/step - loss: 0.4564
Epoch 3/10
63/63 [==============================] - 0s 1ms/step - loss: 0.1842
Epoch 4/10
63/63 [==============================] - 0s 1ms/step - loss: 0.1046
Epoch 5/10
63/63 [==============================] - 0s 953us/step - loss: 0.0770
Epoch 6/10
63/63 [==============================] - 0s 935us/step - loss: 0.0640
Epoch 7/10
63/63 [==============================] - 0s 1ms/step - loss: 0.0568
Epoch 8/10
63/63 [==============================] - 0s 1ms/step - loss: 0.0518
Epoch 9/10
63/63 [==============================] - 0s 953us/step - loss: 0.0482
Epoch 10/10
63/63 [==============================] - 0s 954us/step - loss: 0.0447

two example output vectors:
 [[-1.97 -1.2 3.44 -0.57]
 [4.23 -1.24 -3.13 -5.14]]
largest value 10.285771 smallest value -10.714217

preferred_model = Sequential(
 [

Dense(25, activation = 'relu'),
Dense(15, activation = 'relu'),
Dense(4, activation = 'linear') #<-- Note

]
)
preferred_model.compile(

loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True
optimizer=tf.keras.optimizers.Adam(0.001),

)

preferred_model.fit(
X_train,y_train,
epochs=10

)

p_preferred = preferred_model.predict(X_train)
print(f"two example output vectors:\n {p_preferred[:2]}")
print("largest value", np.max(p_preferred), "smallest value", np.min(p_preferred

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

1
2
3
4
5

http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W2_SoftMax.ipynb#Output-Handling
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W2_SoftMax.ipynb#Output-Handling

The output predictions are not probabilities! If the desired output are probabilities, the output

should be be processed by a softmax (https://www.tensorflow.org/api_docs/python/tf/nn

/softmax).

In [13]:

To select the most likely category, the softmax is not required. One can find the index of the

largest output using np.argmax() (https://numpy.org/doc/stable/reference/generated

/numpy.argmax.html).

In [14]:

SparseCategorialCrossentropy or
CategoricalCrossEntropy

Tensorflow has two potential formats for target values and the selection of the loss defines

which is expected.

• SparseCategorialCrossentropy: expects the target to be an integer corresponding to the

index. For example, if there are 10 potential target values, y would be between 0 and 9.

• CategoricalCrossEntropy: Expects the target value of an example to be one-hot

encoded where the value at the target index is 1 while the other N-1 entries are zero.

An example with 10 potential target values, where the target is 2 would be

[0,0,1,0,0,0,0,0,0,0].

Congratulations!

In this lab you

• Became more familiar with the softmax function and its use in softmax regression and

in softmax activations in neural networks.

• Learned the preferred model construction in Tensorflow:

▪ No activation on the final layer (same as linear activation)

▪ SparseCategoricalCrossentropy loss function

▪ use from_logits=True

two example output vectors:
 [[4.33e-03 9.37e-03 9.69e-01 1.76e-02]
 [9.95e-01 4.16e-03 6.33e-04 8.50e-05]]
largest value 0.99999714 smallest value 2.0621112e-08

[-1.97 -1.2 3.44 -0.57], category: 2
[4.23 -1.24 -3.13 -5.14], category: 0
[2.92 -0.83 -2.66 -4.28], category: 0
[-4.01 1.68 -4.5 -4.24], category: 1
[-0.16 -1.99 5.25 -2.88], category: 2

sm_preferred = tf.nn.softmax(p_preferred).numpy()
print(f"two example output vectors:\n {sm_preferred[:2]}")
print("largest value", np.max(sm_preferred), "smallest value", np.min(sm_preferred

for i in range(5):
print(f"{p_preferred[i]}, category: {np.argmax(p_preferred[i])}")

1
2
3
4
5

1
2
3
4

https://www.tensorflow.org/api_docs/python/tf/nn/softmax
https://www.tensorflow.org/api_docs/python/tf/nn/softmax
https://www.tensorflow.org/api_docs/python/tf/nn/softmax
https://www.tensorflow.org/api_docs/python/tf/nn/softmax
https://www.tensorflow.org/api_docs/python/tf/nn/softmax
https://www.tensorflow.org/api_docs/python/tf/nn/softmax
https://www.tensorflow.org/api_docs/python/tf/nn/softmax
https://www.tensorflow.org/api_docs/python/tf/nn/softmax
https://www.tensorflow.org/api_docs/python/tf/nn/softmax
https://numpy.org/doc/stable/reference/generated/numpy.argmax.html
https://numpy.org/doc/stable/reference/generated/numpy.argmax.html
https://numpy.org/doc/stable/reference/generated/numpy.argmax.html
https://numpy.org/doc/stable/reference/generated/numpy.argmax.html
https://numpy.org/doc/stable/reference/generated/numpy.argmax.html
https://numpy.org/doc/stable/reference/generated/numpy.argmax.html
https://numpy.org/doc/stable/reference/generated/numpy.argmax.html
https://numpy.org/doc/stable/reference/generated/numpy.argmax.html
https://numpy.org/doc/stable/reference/generated/numpy.argmax.html
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W2_SoftMax.ipynb#SparseCategorialCrossentropy-or-CategoricalCrossEntropy
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W2_SoftMax.ipynb#SparseCategorialCrossentropy-or-CategoricalCrossEntropy
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W2_SoftMax.ipynb#Congratulations!
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W2_SoftMax.ipynb#Congratulations!

• Recognized that unlike ReLU and Sigmoid, the softmax spans multiple outputs.

In []:

In []:

1

1

