
Optional Lab - Derivatives
This lab will give you a more intuitive understanding of derivatives. It will show you a simple

way of calculating derivatives arithmetically. It will also introduce you to a handy Python

library that allows you to calculate derivatives symbolically.

In [1]:

Informal definition of derivatives

The formal definition of derivatives can be a bit daunting with limits and values 'going to

zero'. The idea is really much simpler.

The derivative of a function describes how the output of a function changes when there is a

small change in an input variable.

Let's use the cost function as an example. The cost is the output and is the input

variable.

Let's give a 'small change' a name epsilon or . We use these Greek letters because it is

traditional in mathematics to use epsilon() or delta () to represent a small value. You can

think of it as representing 0.001 or some other small value.

This just says if you change the input to the function by a little bit and the output

changes by times that little bit, then the derivative of is equal to .

Let's try this out. Let's look at the derivative of the function at the point

and

�(�) � �

�

� Δ

if � ↑ � causes �(�) ↑ by � × � then

= �∂�(�)
∂�

(1)

�(�)
� �(�) �

�(�) = �2 � = 3
� = 0.001

In [2]:

We have increased the input value a little bit (0.001), causing the output to change from 9 to

9.006001, an increase of 6 times the input increase. Referencing (1) above, this says that

, so . If you are familiar with calculus, you know, written symbolically,

. With this is 6. Our calculation above is not exactly 6 because to be

exactly correct would need to be infinitesimally small (https://www.dictionary.com/browse

/infinitesimally) or really, really small. That is why we use the symbols or ~= rather than =.

Let's see what happens if we make smaller.

� = 6 ≈ 6∂�(�)
∂�

= 2�∂�(�)
∂� � = 3

�

≈
�

J = 9, J_epsilon = 9.006001, dJ_dw ~= k = 6.001000

from sympy import symbols, diff

J = (3)**2
J_epsilon = (3 + 0.001)**2
k = (J_epsilon - J)/0.001 # difference divided by epsilon
print(f"J = {J}, J_epsilon = {J_epsilon}, dJ_dw ~= k = {k:0.6f} ")

1
2

1
2
3
4
5

http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W2_Derivatives.ipynb#Optional-Lab---Derivatives
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W2_Derivatives.ipynb#Optional-Lab---Derivatives
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W2_Derivatives.ipynb#Informal-definition-of-derivatives
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W2_Derivatives.ipynb#Informal-definition-of-derivatives
https://www.dictionary.com/browse/infinitesimally
https://www.dictionary.com/browse/infinitesimally
https://www.dictionary.com/browse/infinitesimally
https://www.dictionary.com/browse/infinitesimally
https://www.dictionary.com/browse/infinitesimally
https://www.dictionary.com/browse/infinitesimally
https://www.dictionary.com/browse/infinitesimally
https://www.dictionary.com/browse/infinitesimally
https://www.dictionary.com/browse/infinitesimally

In [3]:

The value gets close to exactly 6 as we reduce the size of . Feel free to try reducing the

value further.

�

Finding symbolic derivatives

In backprop it is useful to know the derivative of simple functions at any input value. Put

another way, we would like to know the 'symbolic' derivative rather than the 'arithmetic'

derivative. An example of a symbolic derivative is, , the derivative of

 above. With the symbolic derivative you can find the value of the derivative at

any input value .

If you have taken a calculus course, you are familiar with the many differentiation rules

(https://en.wikipedia.org

/wiki/Differentiation_rules#Power_laws,_polynomials,_quotients,_and_reciprocals) that

mathematicians have developed to solve for a derivative given an expression. Well, it turns

out this process has been automated with symbolic differentiation programs. An example of

this in python is the SymPy (https://www.sympy.org/en/index.html) library. Let's take a look

at how to use this.

= 2�∂�(�)
∂�

�(�) = �2
�

Define the python variables and their symbolic names.

� = �2

In [4]:

Define and print the expression. Note SymPy produces a latex (https://en.wikibooks.org

/wiki/LaTeX/Mathematics) string which generates a nicely readable equation.

In [5]:

Use SymPy's diff to differentiate the expression for with respect to . Note the result

matches our earlier example.

� �

In [6]:

Evaluate the derivative at a few points by 'substituting' numeric values for the symbolic

values. In the first example, is replaced by .� 2

J = 9, J_epsilon = 9.000000006, dJ_dw ~= k = 6.000000496442226

Out[5]: �2

Out[6]: 2�

J = (3)**2
J_epsilon = (3 + 0.000000001)**2
k = (J_epsilon - J)/0.000000001
print(f"J = {J}, J_epsilon = {J_epsilon}, dJ_dw ~= k = {k} ")

J, w = symbols('J, w')

J=w**2
J

dJ_dw = diff(J,w)
dJ_dw

1
2
3
4
5

1
2

1
2
3

1
2
3

http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W2_Derivatives.ipynb#Finding-symbolic-derivatives
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W2_Derivatives.ipynb#Finding-symbolic-derivatives
https://en.wikipedia.org/wiki/Differentiation_rules#Power_laws,_polynomials,_quotients,_and_reciprocals
https://en.wikipedia.org/wiki/Differentiation_rules#Power_laws,_polynomials,_quotients,_and_reciprocals
https://en.wikipedia.org/wiki/Differentiation_rules#Power_laws,_polynomials,_quotients,_and_reciprocals
https://en.wikipedia.org/wiki/Differentiation_rules#Power_laws,_polynomials,_quotients,_and_reciprocals
https://en.wikipedia.org/wiki/Differentiation_rules#Power_laws,_polynomials,_quotients,_and_reciprocals
https://en.wikipedia.org/wiki/Differentiation_rules#Power_laws,_polynomials,_quotients,_and_reciprocals
https://en.wikipedia.org/wiki/Differentiation_rules#Power_laws,_polynomials,_quotients,_and_reciprocals
https://en.wikipedia.org/wiki/Differentiation_rules#Power_laws,_polynomials,_quotients,_and_reciprocals
https://en.wikipedia.org/wiki/Differentiation_rules#Power_laws,_polynomials,_quotients,_and_reciprocals
https://en.wikipedia.org/wiki/Differentiation_rules#Power_laws,_polynomials,_quotients,_and_reciprocals
https://www.sympy.org/en/index.html
https://www.sympy.org/en/index.html
https://www.sympy.org/en/index.html
https://www.sympy.org/en/index.html
https://www.sympy.org/en/index.html
https://www.sympy.org/en/index.html
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W2_Derivatives.ipynb#$J-=-w^2$
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W2_Derivatives.ipynb#$J-=-w^2$
https://en.wikibooks.org/wiki/LaTeX/Mathematics
https://en.wikibooks.org/wiki/LaTeX/Mathematics
https://en.wikibooks.org/wiki/LaTeX/Mathematics
https://en.wikibooks.org/wiki/LaTeX/Mathematics
https://en.wikibooks.org/wiki/LaTeX/Mathematics
https://en.wikibooks.org/wiki/LaTeX/Mathematics
https://en.wikibooks.org/wiki/LaTeX/Mathematics
https://en.wikibooks.org/wiki/LaTeX/Mathematics
https://en.wikibooks.org/wiki/LaTeX/Mathematics

In [7]:

In [8]:

In [9]:

� = 2�
In [10]:

In [11]:

In [12]:

In [13]:

Compare this with the arithmetic calculation

In [14]:

For the function , it is easy to see that any change in will result in 2 times that

amount of change in the output , regardless of the starting value of . Our NumPy and

arithmetic results confirm this.

� = 2� �

� �

� = �3

In [15]:

Out[7]: 4

Out[8]: 6

Out[9]: −6

Out[11]: 2�

Out[12]: 2

Out[13]: 2

J = 6, J_epsilon = 6.002, dJ_dw ~= k = 1.9999999999997797

dJ_dw.subs([(w,2)]) # derivative at the point w = 2

dJ_dw.subs([(w,3)]) # derivative at the point w = 3

dJ_dw.subs([(w,-3)]) # derivative at the point w = -3

w, J = symbols('w, J')

J = 2 * w
J

dJ_dw = diff(J,w)
dJ_dw

dJ_dw.subs([(w,-3)]) # derivative at the point w = -3

J = 2*3
J_epsilon = 2*(3 + 0.001)
k = (J_epsilon - J)/0.001
print(f"J = {J}, J_epsilon = {J_epsilon}, dJ_dw ~= k = {k} ")

J, w = symbols('J, w')

1
2

1
2

1
2

1
2

1
2
3

1
2
3

1
2

1
2
3
4
5

1
2

http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W2_Derivatives.ipynb#$J-=-2w$
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W2_Derivatives.ipynb#$J-=-2w$
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W2_Derivatives.ipynb#$J-=-w^3$
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W2_Derivatives.ipynb#$J-=-w^3$

In [16]:

In [17]:

In [18]:

Compare this with the arithmetic calculation

In [19]:

� = 1
�

In [20]:

In [21]:

In [22]:

In [23]:

Compare this with the arithmetic calculation

In [24]:

Out[16]: �3

Out[17]: 3�2

Out[18]: 12

J = 8, J_epsilon = 8.012006000999998, dJ_dw ~= k = 12.006000999997823

Out[21]: 1
�

Out[22]: − 1
�2

Out[23]: − 14

J = 0.5, J_epsilon = 0.49975012493753124, dJ_dw ~= k = -0.2498750624687629

J=w**3
J

dJ_dw = diff(J,w)
dJ_dw

dJ_dw.subs([(w,2)]) # derivative at the point w=2

J = (2)**3
J_epsilon = (2+0.001)**3
k = (J_epsilon - J)/0.001
print(f"J = {J}, J_epsilon = {J_epsilon}, dJ_dw ~= k = {k} ")

J, w = symbols('J, w')

J= 1/w
J

dJ_dw = diff(J,w)
dJ_dw

dJ_dw.subs([(w,2)])

J = 1/2
J_epsilon = 1/(2+0.001)
k = (J_epsilon - J)/0.001
print(f"J = {J}, J_epsilon = {J_epsilon}, dJ_dw ~= k = {k} ")

1
2
3

1
2
3

1
2

1
2
3
4
5

1
2

1
2
3

1
2
3

1
2

1
2
3
4
5

http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W2_Derivatives.ipynb#$J-=-\frac{1}{w}$
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W2_Derivatives.ipynb#$J-=-\frac{1}{w}$

� = 1
�2

In [25]:

If you have time, try to repeat the above steps on the function and evaluate at w=4� = 1
�2

In []:

In []:

In []:

Compare this with the arithmetic calculation

In [26]:

Click for hints

J= 1/w**2

dJ_dw = diff(J,w)

dJ_dw.subs([(w,4)])

Congratulations!

If you have run through the above examples, you understand a derivative describes the

change in the output of a function that is a result of a small change in an input to that

function. You also can use SymPy in python to find the symbolic derivative of functions.

J = 0.0625, J_epsilon = 0.06246876171484496, dJ_dw ~= k = -0.0312382851550
41345

J, w = symbols('J, w')

J = 1/4**2
J_epsilon = 1/(4+0.001)**2
k = (J_epsilon - J)/0.001
print(f"J = {J}, J_epsilon = {J_epsilon}, dJ_dw ~= k = {k} ")

1
2

1

1

1

1
2
3
4
5

http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W2_Derivatives.ipynb#$J-=-\frac{1}{w^2}$
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W2_Derivatives.ipynb#$J-=-\frac{1}{w^2}$
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W2_Derivatives.ipynb#Congratulations!
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W2_Derivatives.ipynb#Congratulations!

