
Optional Lab: Back propagation using a
computation graph
Working through this lab will give you insight into a key algorithm used by most machine

learning frameworks. Gradient descent requires the derivative of the cost with respect to

each parameter in the network. Neural networks can have millions or even billions of

parameters. The back propagation algorithm is used to compute those derivatives.

Computation graphs are used to simplify the operation. Let's dig into this below.

In [1]:

Computation Graph

A computation graph simplifies the computation of complex derivatives by breaking them

into smaller steps. Let's see how this works.

Let's calculate the derivative of this slightly complex expression, . We would

like to find the derivative of  with respect to  or .

� = (2 + 3�)2
� � ∂�

∂�

In [2]:

Above, you can see we broke the expression into two nodes which we can work on

independently. If you already have a good understanding of the process from the lecture,

you can go ahead and fill in the boxes in the diagram above. You will want to first fill in the

blue boxes going left to right and then fill in the green boxes starting on the right and moving

to the left. If you have the correct values, the values will show as green or blue. If the value

is incorrect, it will be red. Note, the interactive graphic is not particularly robust. If you run

into trouble with the interface, run the cell above again to restart.

If you are unsure of the process, we will work this example step by step below.

Forward Propagation

Let's calculate the values in the forward direction.

Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 
'home'), ('Back', 'Back to previous …

Out[2]: <lab_utils_backprop.plt_network at 0x7f33f8659090>

from sympy import *
import numpy as np
import re
%matplotlib widget
import matplotlib.pyplot as plt
from matplotlib.widgets import TextBox
from matplotlib.widgets import Button
import ipywidgets as widgets
from lab_utils_backprop import *

plt.close("all")
plt_network(config_nw0, "./images/C2_W2_BP_network0.PNG")

1
2
3
4
5
6
7
8
9

10

1
2
3

http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W2_Backprop.ipynb#Optional-Lab:-Back-propagation-using-a-computation-graph
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W2_Backprop.ipynb#Optional-Lab:-Back-propagation-using-a-computation-graph
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W2_Backprop.ipynb#Computation-Graph
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W2_Backprop.ipynb#Computation-Graph
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W2_Backprop.ipynb#Forward-Propagation
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W2_Backprop.ipynb#Forward-Propagation


Just a note about this section. It uses global variables and reuses them as

the calculation progresses. If you run cells out of order, you may get funny

In [3]:

You can fill these values in the blue boxes above.

Backprop

Backprop is the algorithm we use to calculate derivatives. As described in

the lectures, backprop starts at the right and moves to the left. The first

node to consider is  and the first step is to find � = �2 ∂�
∂�

Arithmetically

Find  by finding how  changes as a result of a little change in . This is described in

detail in the derivatives optional lab.

∂�
∂�

∂�
∂� � �

In [4]:

 is 22 which is . Our result is not exactly  because our epsilon value is not

infinitesimally small.

Symbolically

Now, let's use SymPy to calculate derivatives symbolically as we did in the derivatives

optional lab. We will prefix the name of the variable with an 's' to indicate this is a symbolic

variable.

∂�
∂� 2 × � 2 × �

In [5]:

a = 11, J = 121

J = 121, J_epsilon = 121.02200099999999, dJ_da ~= k = 22.000999999988835 

Out[5]: �2

w = 3
a = 2+3*w
J = a**2
print(f"a = {a}, J = {J}")

a_epsilon = a + 0.001 # a epsilon
J_epsilon = a_epsilon**2 # J_epsilon
k = (J_epsilon - J)/0.001 # difference divided by epsilon
print(f"J = {J}, J_epsilon = {J_epsilon}, dJ_da ~= k = {k} ")

sw,sJ,sa = symbols('w,J,a')
sJ = sa**2
sJ
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In [6]:

In [7]:

So, . When , . This matches our arithmetic calculation above. If

you have not already done so, you can go back to the diagram above and fill in the value for

.

= 2�∂�
∂� � = 11 = 22∂�

∂�

∂�
∂�

Moving from right to left, the next value we would like to compute is . To

do this, we first need to calculate  which describes how the output of this

node, , changes when the input  changes a little bit.

∂�
∂�

∂�
∂�

∂�
∂�

� �

Arithmetically

Find  by finding how  changes as a result of a little change in .∂�
∂� � �

In [8]:

Calculated arithmetically, . Let's try it with SymPy.≈ 3∂�
∂�

In [9]:

In [10]:

Out[6]: 121

Out[7]: 2�

a = 11, a_epsilon = 11.003, da_dw ~= k = 3.0000000000001137 

Out[9]: 3� + 2

Out[10]: 3

sJ.subs([(sa,a)])

dJ_da = diff(sJ, sa)
dJ_da

w_epsilon = w + 0.001 # a  plus a small value, epsilon
a_epsilon = 2 + 3*w_epsilon
k = (a_epsilon - a)/0.001 # difference divided by epsilon
print(f"a = {a}, a_epsilon = {a_epsilon}, da_dw ~= k = {k} ")

sa = 2 + 3*sw
sa

da_dw = diff(sa,sw)
da_dw
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The next step is the interesting part:

• We know that a small change in  will cause  to change by 3 times

that amount.

• We know that a small change in  will cause  to change by 

times that amount. (a=11 in this example)

so, putting these together,

• We know that a small change in  will cause  to change by 

times that amount.

These cascading changes go by the name of the chain rule. It can be written

like this:

� �

� � 2 × �

� � 3 × 2 × �

∂� ∂ ∂�
In [11]:

And  is 11 in this example so . We can check this arithmetically:� = 66∂�
∂�

In [12]:

OK! You can now fill the values for  and  in the diagram if you have not already done

so.

∂�
∂�

∂�
∂�

Another view

One could visualize these cascading changes this way:

A small change in  is multiplied by  resulting in a change that is 3 times as large. This

larger change is then multiplied by  resulting in a change that is now  times

larger.

� ∂�
∂�
∂�
∂� 3 × 22 = 66

Computation Graph of a Simple Neural Network

Below is a graph of the neural network used in the lecture with different values. Try and fill in

the values in the boxes. Note, the interactive graphic is not particularly robust. If you run into

Out[11]: 6�

J = 121, J_epsilon = 121.06600900000001, dJ_dw ~= k = 66.0090000000082 

dJ_dw = da_dw * dJ_da
dJ_dw

w_epsilon = w + 0.001
a_epsilon = 2 + 3*w_epsilon
J_epsilon = a_epsilon**2
k = (J_epsilon - J)/0.001 # difference divided by epsilon
print(f"J = {J}, J_epsilon = {J_epsilon}, dJ_dw ~= k = {k} ")
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trouble with the interface, run the cell below again to restart.

In [13]:

Below, we will go through the computations required to fill in the above computation graph in

detail. We start with the forward path.

Forward propagation

The calculations in the forward path are the ones you have recently learned for neural

networks. You can compare the values below to those you calculated for the diagram above.

In [14]:

Backward propagation (Backprop)

As described in the lectures, backprop starts at the right and moves to the

left. The first node to consider is  and the first step is to find � = 1
2 �
2 ∂�

∂�

∂�
∂�

Arithmetically

Find  by finding how  changes as a result of a little change in .∂�
∂� � �

In [15]:

Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 
'home'), ('Back', 'Back to previous …

Out[13]: <lab_utils_backprop.plt_network at 0x7f33d8394d50>

J=4.5, d=3, a=4, c=-4

J = 4.5, J_epsilon = 4.5030005, dJ_dd ~= k = 3.0004999999997395 

plt.close("all")
plt_network(config_nw1, "./images/C2_W2_BP_network1.PNG")

# Inputs and parameters
x = 2
w = -2
b = 8
y = 1
# calculate per step values   
c = w * x
a = c + b
d = a - y
J = d**2/2
print(f"J={J}, d={d}, a={a}, c={c}")

d_epsilon = d + 0.001
J_epsilon = d_epsilon**2/2
k = (J_epsilon - J)/0.001 # difference divided by epsilon
print(f"J = {J}, J_epsilon = {J_epsilon}, dJ_dd ~= k = {k} ")

1
2
3
4

1
2
3
4
5
6
7
8
9

10
11
12
13

1
2
3
4
5
6

http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W2_Backprop.ipynb#Forward-propagation
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W2_Backprop.ipynb#Forward-propagation
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W2_Backprop.ipynb#Backward-propagation-(Backprop)
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W2_Backprop.ipynb#Backward-propagation-(Backprop)
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W2_Backprop.ipynb#$\frac{\partial-J}{\partial-d}$
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W2_Backprop.ipynb#$\frac{\partial-J}{\partial-d}$
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W2_Backprop.ipynb#Arithmetically
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W2_Backprop.ipynb#Arithmetically


 is 3, which is the value of . Our result is not exactly  because our epsilon value is not

infinitesimally small.

Symbolically

Now, let's use SymPy to calculate derivatives symbolically, as we did in the derivatives

optional lab. We will prefix the name of the variable with an 's' to indicate this is a symbolic

variable.

∂�
∂� � �

In [16]:

In [17]:

In [18]:

So,  = d. When ,  = 3. This matches our arithmetic calculation above. If you

have not already done so, you can go back to the diagram above and fill in the value for .

∂�
∂� � = 3 ∂�∂�

∂�
∂�

Moving from right to left, the next value we would like to compute is . To

do this, we first need to calculate  which describes how the output of this

node changes when the input  changes a little bit. (Note, we are not interested in how the

output changes when  changes since  is not a parameter.)

∂�
∂�

∂�
∂�

∂�
∂�

�

� �

Arithmetically

Find  by finding how  changes as a result of a little change in .∂�
∂� � �

Out[16]: �2

2

Out[17]: 9
2

Out[18]: �

sx,sw,sb,sy,sJ = symbols('x,w,b,y,J')
sa, sc, sd = symbols('a,c,d')
sJ = sd**2/2
sJ

sJ.subs([(sd,d)])

dJ_dd = diff(sJ, sd)
dJ_dd
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In [19]:

Calculated arithmetically, . Let's try it with SymPy.

Symbolically

≈ 1∂�
∂�

In [20]:

In [21]:

Calculated arithmetically,  also equals 1.

The next step is the interesting part, repeated again in this example:

• We know that a small change in  will cause  to change by 1 times

that amount.

• We know that a small change in  will cause  to change by  times

that amount. (d=3 in this example)

so, putting these together,

• We know that a small change in  will cause  to change by 

times that amount.

This is again the chain rule. It can be written like this:

Let's try calculating it:

∂�
∂�

� �

� � �

� � 1 × �

=∂�
∂�

∂�
∂�
∂�
∂�

In [22]:

And  is 3 in this example so . We can check this arithmetically:� = 3∂�
∂�

d = 3, d_epsilon = 3.0010000000000003, dd_da ~= k = 1.000000000000334 

Out[20]: � − �

Out[21]: 1

Out[22]: �

a_epsilon = a + 0.001 # a  plus a small value
d_epsilon = a_epsilon - y
k = (d_epsilon - d)/0.001 # difference divided by epsilon
print(f"d = {d}, d_epsilon = {d_epsilon}, dd_da ~= k = {k} ")

sd = sa - sy
sd

dd_da = diff(sd,sa)
dd_da

dJ_da = dd_da * dJ_dd
dJ_da
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In [23]:

OK, they match! You can now fill the values for  and  in the diagram if you have not

already done so.

∂�
∂�

∂�
∂�

The steps in backprop

Now that you have worked through several nodes, we can write down the

basic method:

working right to left, for each node:

• calculate the local derivative(s) of the node

• using the chain rule, combine with the derivative of the cost with respect

to the node to the right.

The 'local derivative(s)' are the derivative(s) of the output of the current node with respect to

all inputs or parameters.

Let's continue the job. We'll be a bit less verbose now that you are familiar with the method.

, 

The next node has two derivatives of interest. We need to calculate  so

we can propagate to the left. We also want to calculate . Finding the

derivative of the cost with respect to the parameters  and  is the object of backprop. We

will find the local derivatives,  and  first and then combine those with the derivative

coming from the right, .

∂�
∂�

∂�
∂�

∂�
∂�

∂�
∂�

� �
∂�
∂�

∂�
∂�

∂�
∂�

In [24]:

In [25]:

J = 4.5, J_epsilon = 4.503000500000001, dJ_da ~= k = 3.0005000000006277 

Out[24]: � + �

1 1

a_epsilon = a + 0.001
d_epsilon = a_epsilon - y
J_epsilon = d_epsilon**2/2
k = (J_epsilon - J)/0.001
print(f"J = {J}, J_epsilon = {J_epsilon}, dJ_da ~= k = {k} ")

# calculate the local derivatives da_dc, da_db
sa = sc + sb
sa

da_dc = diff(sa,sc)
da_db = diff(sa,sb)
print(da_dc, da_db)
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In [26]:

And in our example, d = 3

The last node in this example calculates c . Here, we are interested in how

J changes with respect to the parameter w. We will not back propagate to

the input , so we are not interested in . Let's start by calculating .

∂�
∂�

� ∂�
∂�

∂�
∂�

In [27]:

In [28]:

This derivative is a bit more exciting than the last one. This will vary depending on the value

of . This is 2 in our example.

Combine this with  to find .

�

∂�
∂�

∂�
∂�

In [29]:

In [ ]:

, so  for our example.

Let's test this arithmetically:

� = 3 = 6∂�
∂�

In [30]:

dJ_dc = d,  dJ_db = d

Out[27]: ��

Out[28]: �

Out[29]: ��

J = 4.5, J_epsilon = 4.506002, dJ_dw ~= k = 6.001999999999619 

dJ_dc = da_dc * dJ_da
dJ_db = da_db * dJ_da
print(f"dJ_dc = {dJ_dc},  dJ_db = {dJ_db}")

# calculate the local derivative
sc = sw * sx
sc

dc_dw = diff(sc,sw)
dc_dw

dJ_dw = dc_dw * dJ_dc
dJ_dw

print(f"dJ_dw = {dJ_dw.subs([(sd,d),(sx,x)])}")

J_epsilon = ((w+0.001)*x+b - y)**2/2
k = (J_epsilon - J)/0.001
print(f"J = {J}, J_epsilon = {J_epsilon}, dJ_dw ~= k = {k} ")
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They match! Great. You can add  to the diagram above and our analysis is complete.∂�
∂�

Congratulations!

You've worked through an example of back propagation using a computation graph. You can

apply this to larger examples by following the same node by node approach.
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