
Practice Lab: Advice for Applying
Machine Learning
In this lab, you will explore techniques to evaluate and improve your machine
learning models.

Outline
• 1 - Packages
• 2 - Evaluating a Learning Algorithm (Polynomial Regression)

▪ 2.1 Splitting your data set
▪ 2.2 Error calculation for model evaluation, linear regression

◦ Exercise 1
▪ 2.3 Compare performance on training and test data

• 3 - Bias and Variance

▪ 3.1 Plot Train, Cross-Validation, Test
▪ 3.2 Finding the optimal degree
▪ 3.3 Tuning Regularization.
▪ 3.4 Getting more data: Increasing Training Set Size (m)

• 4 - Evaluating a Learning Algorithm (Neural Network)
▪ 4.1 Data Set
▪ 4.2 Evaluating categorical model by calculating classification error

◦ Exercise 2
• 5 - Model Complexity

▪ Exercise 3
▪ 5.1 Simple model

◦ Exercise 4
• 6 - Regularization

▪ Exercise 5

• 7 - Iterate to find optimal regularization value
▪ 7.1 Test

1 - Packages
First, let's run the cell below to import all the packages that you will need during
this assignment.

• numpy is the fundamental package for scientific computing Python.
• matplotlib is a popular library to plot graphs in Python.
• scikitlearn is a basic library for data mining
• tensorflow a popular platform for machine learning.

2 - Evaluating a Learning Algorithm (Polynomial
Regression)
Let's say you have
created a machine
learning model and
you find it fits your
training data very
well. You're done?
Not quite. The goal
of creating the
model was to be
able to predict

In [4]:
import numpy as np

%matplotlib widget

import matplotlib.pyplot as plt

from sklearn.linear_model import LinearRegression, Ridge

from sklearn.preprocessing import StandardScaler, PolynomialFeatures

from sklearn.model_selection import train_test_split

from sklearn.metrics import mean_squared_error

import tensorflow as tf

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense

from tensorflow.keras.activations import relu,linear

from tensorflow.keras.losses import SparseCategoricalCrossentropy

from tensorflow.keras.optimizers import Adam

import logging

logging.getLogger("tensorflow").setLevel(logging.ERROR)

from public_tests_a1 import *

tf.keras.backend.set_floatx('float64')

from assigment_utils import *

tf.autograph.set_verbosity(0)

able to predict
values for new
examples.

How can you test your model's performance on new data before deploying it?
The answer has two parts:

• Split your original data set into "Training" and "Test" sets.
▪ Use the training data to fit the parameters of the model
▪ Use the test data to evaluate the model on new data

• Develop an error function to evaluate your model.

2.1 Splitting your data set

Lectures advised reserving 20-40% of your data set for testing. Let's use an
sklearn function train_test_split to perform the split. Double-check the shapes

after running the following cell.

X.shape (18,) y.shape (18,)

X_train.shape (12,) y_train.shape (12,)

X_test.shape (6,) y_test.shape (6,)

2.1.1 Plot Train, Test sets

You can see below the data points that will be part of training (in red) are
intermixed with those that the model is not trained on (test). This particular data
set is a quadratic function with noise added. The "ideal" curve is shown for
reference.

Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', '

home'), ('Back', 'Back to previous …

2.2 Error calculation for model evaluation, linear

In [5]:
Generate some data

X,y,x_ideal,y_ideal = gen_data(18, 2, 0.7)

print("X.shape", X.shape, "y.shape", y.shape)

#split the data using sklearn routine

X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.33, random_state

print("X_train.shape", X_train.shape, "y_train.shape", y_train.shape)

print("X_test.shape", X_test.shape, "y_test.shape", y_test.shape)

In [6]:
fig, ax = plt.subplots(1,1,figsize=(4,4))

ax.plot(x_ideal, y_ideal, "--", color = "orangered", label="y_ideal", lw=1

ax.set_title("Training, Test",fontsize = 14)

ax.set_xlabel("x")

ax.set_ylabel("y")

ax.scatter(X_train, y_train, color = "red", label="train")

ax.scatter(X_test, y_test, color = dlc["dlblue"], label="test")

ax.legend(loc='upper left')

plt.show()

2.2 Error calculation for model evaluation, linear
regression

When evaluating a linear regression model, you average the squared error
difference of the predicted values and the target values.

Exercise 1

Below, create a function to evaluate the error on a data set for a linear regression
model.

 All tests passed.

Click for hints
def eval_mse(y, yhat):

"""

 Calculate the mean squared error on a data set.

 Args:

 y : (ndarray Shape (m,) or (m,1)) target value of

each example

 yhat : (ndarray Shape (m,) or (m,1)) predicted value of

each example

 Returns:

 err: (scalar)

J

test

(w, b) =

1

2m

test

m

test

−1

∑

i=0

(f

w,b

(x

(i)

test

) − y

(i)

test

)

2

(1)

In [9]:
UNQ_C1

GRADED CELL: eval_mse

def eval_mse(y, yhat):

"""

 Calculate the mean squared error on a data set.

 Args:

 y : (ndarray Shape (m,) or (m,1)) target value of each example

 yhat : (ndarray Shape (m,) or (m,1)) predicted value of each example

 Returns:

 err: (scalar)

 """

m = len(y)

err = 0.0

for i in range(m):

START CODE HERE ###

err+=(y[i]-yhat[i])**2

END CODE HERE ###

err/= 2*m

return(err)

In [10]:
y_hat = np.array([2.4, 4.2])

y_tmp = np.array([2.3, 4.1])

eval_mse(y_hat, y_tmp)

BEGIN UNIT TEST

test_eval_mse(eval_mse)

END UNIT TEST

 err: (scalar)

 """

m = len(y)

err = 0.0

for i in range(m):

err_i = ((yhat[i] - y[i])**2)

err += err_i

err = err / (2*m)

return(err)

2.3 Compare performance on training and test data

Let's build a high degree polynomial model to minimize training error. This will use
the linear_regression functions from sklearn . The code is in the imported utility
file if you would like to see the details. The steps below are:

• create and fit the model. ('fit' is another name for training or running gradient
descent).

• compute the error on the training data.
• compute the error on the test data.

The computed error on the training set is substantially less than that of the test
set.

training err 58.01, test err 171215.01

The following plot shows why this is. The model fits the training data very well. To
do so, it has created a complex function. The test data was not part of the training
and the model does a poor job of predicting on this data.
This model would be described as 1) is overfitting, 2) has high variance 3)
'generalizes' poorly.

In [11]:
create a model in sklearn, train on training data

degree = 10

lmodel = lin_model(degree)

lmodel.fit(X_train, y_train)

predict on training data, find training error

yhat = lmodel.predict(X_train)

err_train = lmodel.mse(y_train, yhat)

predict on test data, find error

yhat = lmodel.predict(X_test)

err_test = lmodel.mse(y_test, yhat)

In [12]:
print(f"training err {err_train:0.2f}, test err {err_test:0.2f}")

In [13]:
plot predictions over data range

x = np.linspace(0,int(X.max()),100) # predict values for plot

y_pred = lmodel.predict(x).reshape(-1,1)

plt_train_test(X_train, y_train, X_test, y_test, x, y_pred, x_ideal, y_ideal

Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', '

home'), ('Back', 'Back to previous …

The test set error shows this model will not work well on new data. If you use the
test error to guide improvements in the model, then the model will perform well
on the test data... but the test data was meant to represent new data. You need yet
another set of data to test new data performance.

The proposal made during lecture is to separate data into three groups. The
distribution of training, cross-validation and test sets shown in the below table is a
typical distribution, but can be varied depending on the amount of data available.

data
% of
total

Description

training 60
Data used to tune model parameters and in training or
fitting

cross-
validation

20
Data used to tune other model parameters like degree of
polynomial, regularization or the architecture of a neural
network.

test 20
Data used to test the model after tuning to gauge
performance on new data

Let's generate three data sets below. We'll once again use train_test_split
from sklearn but will call it twice to get three splits:

X.shape (40,) y.shape (40,)

X_train.shape (24,) y_train.shape (24,)

X_cv.shape (8,) y_cv.shape (8,)

X_test.shape (8,) y_test.shape (8,)

3 - Bias and Variance

w b

In [14]:
Generate data

X,y, x_ideal,y_ideal = gen_data(40, 5, 0.7)

print("X.shape", X.shape, "y.shape", y.shape)

#split the data using sklearn routine

X_train, X_, y_train, y_ = train_test_split(X,y,test_size=0.40, random_state

X_cv, X_test, y_cv, y_test = train_test_split(X_,y_,test_size=0.50, random_state

print("X_train.shape", X_train.shape, "y_train.shape", y_train.shape)

print("X_cv.shape", X_cv.shape, "y_cv.shape", y_cv.shape)

print("X_test.shape", X_test.shape, "y_test.shape", y_test.shape)

Above, it was clear the degree of the polynomial model was too high. How can
you choose a good value? It turns out, as shown in the diagram, the training and
cross-validation performance can provide guidance. By trying a range of degree
values, the training and cross-validation performance can be evaluated. As the
degree becomes too large, the cross-validation performance will start to degrade
relative to the training performance. Let's try this on our example.

3.1 Plot Train, Cross-Validation, Test

You can see below the datapoints that will be part of training (in red) are
intermixed with those that the model is not trained on (test and cv).

Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', '

home'), ('Back', 'Back to previous …

3.2 Finding the optimal degree

In previous labs, you found that you could create a model capable of fitting
complex curves by utilizing a polynomial (See Course1, Week2 Feature Engineering
and Polynomial Regression Lab). Further, you demonstrated that by increasing the
degree of the polynomial, you could create overfitting. (See Course 1, Week3,
Over-Fitting Lab). Let's use that knowledge here to test our ability to tell the
difference between over-fitting and under-fitting.

Let's train the model repeatedly, increasing the degree of the polynomial each
iteration. Here, we're going to use the scikit-learn linear regression model for
speed and simplicity.

In [15]:
fig, ax = plt.subplots(1,1,figsize=(4,4))

ax.plot(x_ideal, y_ideal, "--", color = "orangered", label="y_ideal", lw=1

ax.set_title("Training, CV, Test",fontsize = 14)

ax.set_xlabel("x")

ax.set_ylabel("y")

ax.scatter(X_train, y_train, color = "red", label="train")

ax.scatter(X_cv, y_cv, color = dlc["dlorange"], label="cv")

ax.scatter(X_test, y_test, color = dlc["dlblue"], label="test")

ax.legend(loc='upper left')

plt.show()

In [16]:
max_degree = 9

err_train = np.zeros(max_degree)

err_cv = np.zeros(max_degree)

x = np.linspace(0,int(X.max()),100)

y_pred = np zeros((100 max_degree)) #columns are lines to plot

Let's plot the result:

Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', '

home'), ('Back', 'Back to previous …

The plot above demonstrates that separating data into two groups, data the
model is trained on and data the model has not been trained on, can be used to
determine if the model is underfitting or overfitting. In our example, we created a
variety of models varying from underfitting to overfitting by increasing the degree
of the polynomial used.

• On the left plot, the solid lines represent the predictions from these models. A
polynomial model with degree 1 produces a straight line that intersects very
few data points, while the maximum degree hews very closely to every data
point.

• on the right:
▪ the error on the trained data (blue) decreases as the model complexity

increases as expected
▪ the error of the cross-validation data decreases initially as the model

starts to conform to the data, but then increases as the model starts to
over-fit on the training data (fails to generalize).

It's worth noting that the curves in these examples as not as smooth as one might
draw for a lecture. It's clear the specific data points assigned to each group can
change your results significantly. The general trend is what is important.

3.3 Tuning Regularization.

In previous labs, you have utilized regularization to reduce overfitting. Similar to
degree, one can use the same methodology to tune the regularization parameter
lambda ().

Let's demonstrate this by starting with a high degree polynomial and varying the
regularization parameter.

y_pred = np.zeros((100,max_degree)) #columns are lines to plot

for degree in range(max_degree):

lmodel = lin_model(degree+1)

lmodel.fit(X_train, y_train)

yhat = lmodel.predict(X_train)

err_train[degree] = lmodel.mse(y_train, yhat)

yhat = lmodel.predict(X_cv)

err_cv[degree] = lmodel.mse(y_cv, yhat)

y_pred[:,degree] = lmodel.predict(x)

optimal_degree = np.argmin(err_cv)+1

In [17]:
plt.close("all")

plt_optimal_degree(X_train, y_train, X_cv, y_cv, x, y_pred, x_ideal, y_ideal

err_train, err_cv, optimal_degree, max_degree)

λ

Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', '

home'), ('Back', 'Back to previous …

Above, the plots show that as regularization increases, the model moves from a
high variance (overfitting) model to a high bias (underfitting) model. The vertical
line in the right plot shows the optimal value of lambda. In this example, the
polynomial degree was set to 10.

3.4 Getting more data: Increasing Training Set Size (m)

When a model is overfitting (high variance), collecting additional data can improve
performance. Let's try that here.

Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', '

home'), ('Back', 'Back to previous …

The above plots show that when a model has high variance and is overfitting,
adding more examples improves performance. Note the curves on the left plot.
The final curve with the highest value of is a smooth curve that is in the center
of the data. On the right, as the number of examples increases, the performance of
the training set and cross-validation set converge to similar values. Note that the
curves are not as smooth as one might see in a lecture. That is to be expected. The
trend remains clear: more data improves generalization.

Note that adding more examples when the model has high bias
(underfitting) does not improve performance.

In [18]:
lambda_range = np.array([0.0, 1e-6, 1e-5, 1e-4,1e-3,1e-2, 1e-1,1,10,100])

num_steps = len(lambda_range)

degree = 10

err_train = np.zeros(num_steps)

err_cv = np.zeros(num_steps)

x = np.linspace(0,int(X.max()),100)

y_pred = np.zeros((100,num_steps)) #columns are lines to plot

for i in range(num_steps):

lambda_= lambda_range[i]

lmodel = lin_model(degree, regularization=True, lambda_=lambda_)

lmodel.fit(X_train, y_train)

yhat = lmodel.predict(X_train)

err_train[i] = lmodel.mse(y_train, yhat)

yhat = lmodel.predict(X_cv)

err_cv[i] = lmodel.mse(y_cv, yhat)

y_pred[:,i] = lmodel.predict(x)

optimal_reg_idx = np.argmin(err_cv)

In [19]:
plt.close("all")

plt_tune_regularization(X_train, y_train, X_cv, y_cv, x, y_pred, err_train

In [20]:
X_train, y_train, X_cv, y_cv, x, y_pred, err_train, err_cv, m_range,degree

plt_tune_m(X_train, y_train, X_cv, y_cv, x, y_pred, err_train, err_cv, m_range

m

4 - Evaluating a Learning Algorithm (Neural
Network)
Above, you tuned aspects of a polynomial regression model. Here, you will work
with a neural network model. Let's start by creating a classification data set.

4.1 Data Set

Run the cell below to generate a data set and split it into training, cross-validation
(CV) and test sets. In this example, we're increasing the percentage of cross-
validation data points for emphasis.

X_train.shape: (400, 2) X_cv.shape: (320, 2) X_test.shape: (80, 2)

Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', '

home'), ('Back', 'Back to previous …

Above, you can see the data on the left. There are six clusters identified by color.
Both training points (dots) and cross-validataion points (triangles) are shown. The
interesting points are those that fall in ambiguous locations where either cluster
might consider them members. What would you expect a neural network model to
do? What would be an example of overfitting? underfitting?
On the right is an example of an 'ideal' model, or a model one might create
knowing the source of the data. The lines represent 'equal distance' boundaries
where the distance between center points is equal. It's worth noting that this
model would "misclassify" roughly 8% of the total data set.

4.2 Evaluating categorical model by calculating
classification error

The evaluation function for categorical models used here is simply the fraction of
incorrect predictions:

Exercise 2

In [21]:
Generate and split data set

X, y, centers, classes, std = gen_blobs()

split the data. Large CV population for demonstration

X_train, X_, y_train, y_ = train_test_split(X,y,test_size=0.50, random_state

X_cv, X_test, y_cv, y_test = train_test_split(X_,y_,test_size=0.20, random_state

print("X_train.shape:", X_train.shape, "X_cv.shape:", X_cv.shape, "X_test.shape:"

In [22]:
plt_train_eq_dist(X_train, y_train,classes, X_cv, y_cv, centers, std)

J

cv

=

1

m

m−1

∑

i=0

{

1, if ŷ

(i)

≠ y

(i)

0, otherwise

Exercise 2

Below, complete the routine to calculate classification error. Note, in this lab,
target values are the index of the category and are not one-hot encoded.

categorization error 0.333, expected:0.333

categorization error 0.250, expected:0.250

 All tests passed.

 All tests passed.

Click for hints
def eval_cat_err(y, yhat):

"""

 Calculate the categorization error

 Args:

 y : (ndarray Shape (m,) or (m,1)) target value of

each example

 yhat : (ndarray Shape (m,) or (m,1)) predicted value of

each example

 Returns:|

 cerr: (scalar)

 """

m = len(y)

incorrect = 0

In [34]:
UNQ_C2

GRADED CELL: eval_cat_err

def eval_cat_err(y, yhat):

"""

 Calculate the categorization error

 Args:

 y : (ndarray Shape (m,) or (m,1)) target value of each example

 yhat : (ndarray Shape (m,) or (m,1)) predicted value of each example

 Returns:|

 cerr: (scalar)

 """

m = len(y)

incorrect = 0

for i in range(m):

START CODE HERE ###

if(yhat[i]!=y[i]):

incorrect+=1

END CODE HERE ###

cerr=incorrect/m

return(cerr)

In [35]:
y_hat = np.array([1, 2, 0])

y_tmp = np.array([1, 2, 3])

print(f"categorization error {np.squeeze(eval_cat_err(y_hat, y_tmp)):0.3f}

y_hat = np.array([[1], [2], [0], [3]])

y_tmp = np.array([[1], [2], [1], [3]])

print(f"categorization error {np.squeeze(eval_cat_err(y_hat, y_tmp)):0.3f}

BEGIN UNIT TEST

test_eval_cat_err(eval_cat_err)

END UNIT TEST

BEGIN UNIT TEST

test_eval_cat_err(eval_cat_err)

END UNIT TEST

