
Practice Lab: Neural Networks for
Handwritten Digit Recognition,
Multiclass
In this exercise, you will use a neural network to recognize the hand-written digits
0-9.

Outline
• 1 - Packages
• 2 - ReLU Activation
• 3 - Softmax Function

▪ Exercise 1
• 4 - Neural Networks

▪ 4.1 Problem Statement
▪ 4.2 Dataset
▪ 4.3 Model representation
▪ 4.4 Tensorflow Model Implementation
▪ 4.5 Softmax placement

◦ Exercise 2

1 - Packages
First, let's run the cell below to import all the packages that you will need during
this assignment.

• numpy is the fundamental package for scientific computing with Python.
• matplotlib is a popular library to plot graphs in Python.
• tensorflow a popular platform for machine learning.

In [1]:
import numpy as np

import tensorflow as tf

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense

from tensorflow.keras.activations import linear, relu, sigmoid

%matplotlib widget

import matplotlib.pyplot as plt

plt.style.use('./deeplearning.mplstyle')

import logging

logging.getLogger("tensorflow").setLevel(logging.ERROR)

tf.autograph.set_verbosity(0)

from public_tests import *

2 - ReLU Activation
This week, a new activation was introduced, the Rectified Linear Unit (ReLU).

Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', '

home'), ('Back', 'Back to previous …

The example
from the
lecture on the
right shows an
application of
the ReLU. In
this example,
the derived
"awareness"
feature is not
binary but has
a continuous range of values. The sigmoid is best for on/off or binary situations.
The ReLU provides a continuous linear relationship. Additionally it has an 'off'
range where the output is zero. The "off" feature makes the ReLU a Non-Linear
activation. Why is this needed? This enables multiple units to contribute to to the
resulting function without interfering. This is examined more in the supporting
optional lab.

3 - Softmax Function
A multiclass neural network generates N outputs. One output is selected as the
predicted answer. In the output layer, a vector is generated by a linear function
which is fed into a softmax function. The softmax function converts into a
probability distribution as described below. After applying softmax, each output
will be between 0 and 1 and the outputs will sum to 1. They can be interpreted as
probabilities. The larger inputs to the softmax will correspond to larger output
probabilities.

from autils import *

from lab_utils_softmax import plt_softmax

np.set_printoptions(precision=2)

a = max(0, z) # ReLU function

In [2]:
plt_act_trio()

z

z

The softmax function can be written:

Where and N is the number of feature/categories in the output
layer.

Exercise 1

Let's create a NumPy implementation:

my_softmax(z): [0.03 0.09 0.24 0.64]

tensorflow softmax(z): [0.03 0.09 0.24 0.64]

 All tests passed.

Click for hints One implementation uses for loop to first build the denominator

and then a second loop to calculate each output.

def my_softmax(z):

N = len(z)

a = # initialize a to zeros

ez_sum = # initialize sum to zero

for k in range(N): # loop over number of outputs

ez_sum += # sum exp(z[k]) to build the shared

a

j

=

e

z

j

∑

N−1

k=0

e

z

k

(1)

z = w ⋅ x + b

In [7]:
UNQ_C1

GRADED CELL: my_softmax

def my_softmax(z):

""" Softmax converts a vector of values to a probability distribution.

 Args:

 z (ndarray (N,)) : input data, N features

 Returns:

 a (ndarray (N,)) : softmax of z

 """

START CODE HERE ###

ez = np.exp(z)

a = ez/np.sum(ez)

END CODE HERE ###

return a

In [8]:
z = np.array([1., 2., 3., 4.])

a = my_softmax(z)

atf = tf.nn.softmax(z)

print(f"my_softmax(z): {a}")

print(f"tensorflow softmax(z): {atf}")

BEGIN UNIT TEST

test_my_softmax(my_softmax)

END UNIT TEST

denominator

for j in range(N): # loop over number of outputs again

a[j] = # divide each the exp of each output

by the denominator

return(a)

Click for code
def my_softmax(z):

N = len(z)

a = np.zeros(N)

ez_sum = 0

for k in range(N):

ez_sum += np.exp(z[k])

for j in range(N):

a[j] = np.exp(z[j])/ez_sum

return(a)

Or, a vector implementation:

def my_softmax(z):

ez = np.exp(z)

a = ez/np.sum(ez)

return(a)

Below, vary the values of the z inputs. Note in particular how the exponential in
the numerator magnifies small differences in the values. Note as well that the
output values sum to one.

Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', '

home'), ('Back', 'Back to previous …

4 - Neural Networks
In last weeks assignment, you implemented a neural network to do binary
classification. This week you will extend that to multiclass classification. This will
utilize the softmax activation.

4.1 Problem Statement

In this exercise, you will use a neural network to recognize ten handwritten digits,
0-9. This is a multiclass classification task where one of n choices is selected.
Automated handwritten digit recognition is widely used today - from recognizing
zip codes (postal codes) on mail envelopes to recognizing amounts written on
bank checks.

4.2 Dataset

You will start by loading the dataset for this task.

In [9]:
plt.close("all")

plt_softmax(my_softmax)

• The load_data() function shown below loads the data into variables X
and y

• The data set contains 5000 training examples of handwritten digits .

▪ Each training example is a 20-pixel x 20-pixel grayscale image of the digit.
◦ Each pixel is represented by a floating-point number indicating the

grayscale intensity at that location.
◦ The 20 by 20 grid of pixels is “unrolled” into a 400-dimensional

vector.
◦ Each training examples becomes a single row in our data matrix X .
◦ This gives us a 5000 x 400 matrix X where every row is a training

example of a handwritten digit image.

• The second part of the training set is a 5000 x 1 dimensional vector y that
contains labels for the training set
▪ y = 0 if the image is of the digit 0 , y = 4 if the image is of the digit

4 and so on.

 This is a subset of the MNIST handwritten digit dataset (http://yann.lecun.com/exdb/mnist/)

4.2.1 View the variables

Let's get more familiar with your dataset.

• A good place to start is to print out each variable and see what it contains.

The code below prints the first element in the variables X and y .

The first element of y is: 0

The last element of y is: 9

4.2.2 Check the dimensions of your variables

Another way to get familiar with your data is to view its dimensions. Please print
the shape of X and y and see how many training examples you have in your

1

X =

⎛

⎜
⎝

− − −(x

(1)

) − −−

− − −(x

(2)

) − −−

⋮

− − −(x

(m)

) − −−

⎞

⎟
⎠

1

In [10]:
load dataset

X, y = load_data()

In []:
print ('The first element of X is: ', X[0])

In [11]:
print ('The first element of y is: ', y[0,0])

print ('The last element of y is: ', y[-1,0])

the shape of X and y and see how many training examples you have in your
dataset.

The shape of X is: (5000, 400)

The shape of y is: (5000, 1)

4.2.3 Visualizing the Data

You will begin by visualizing a subset of the training set.

• In the cell below, the code randomly selects 64 rows from X , maps each row
back to a 20 pixel by 20 pixel grayscale image and displays the images
together.

• The label for each image is displayed above the image

Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', '

home'), ('Back', 'Back to previous …

4.3 Model representation

The neural network you will use in this assignment is shown in the figure below.

• This has two dense layers with ReLU activations followed by an output layer
with a linear activation.
▪ Recall that our inputs are pixel values of digit images.
▪ Since the images are of size , this gives us inputs

In [12]:
print ('The shape of X is: ' + str(X.shape))

print ('The shape of y is: ' + str(y.shape))

In [13]:
import warnings

warnings.simplefilter(action='ignore', category=FutureWarning)

You do not need to modify anything in this cell

m, n = X.shape

fig, axes = plt.subplots(8,8, figsize=(5,5))

fig.tight_layout(pad=0.13,rect=[0, 0.03, 1, 0.91]) #[left, bottom, right, top]

#fig.tight_layout(pad=0.5)

widgvis(fig)

for i,ax in enumerate(axes.flat):

Select random indices

random_index = np.random.randint(m)

Select rows corresponding to the random indices and

reshape the image

X_random_reshaped = X[random_index].reshape((20,20)).T

Display the image

ax.imshow(X_random_reshaped, cmap='gray')

Display the label above the image

ax.set_title(y[random_index,0])

ax.set_axis_off()

fig.suptitle("Label, image", fontsize=14)

20 × 20 400

• The parameters have dimensions that are sized for a neural network with
units in layer 1, units in layer 2 and output units in layer 3, one for each
digit.

▪ Recall that the dimensions of these parameters is determined as follows:

◦ If network has units in a layer and units in the next layer,
then
◦ will be of dimension .
◦ will be a vector with elements

▪ Therefore, the shapes of W , and b , are

◦ layer1: The shape of W1 is (400, 25) and the shape of b1 is (25,)
◦ layer2: The shape of W2 is (25, 15) and the shape of b2 is: (15,)
◦ layer3: The shape of W3 is (15, 10) and the shape of b3 is: (10,)

Note: The bias vector b could be represented as a 1-D (n,) or 2-D
(n,1) array. Tensorflow utilizes a 1-D representation and this lab will
maintain that convention:

4.4 Tensorflow Model Implementation

Tensorflow models are built layer by layer. A layer's input dimensions (above)
are calculated for you. You specify a layer's output dimensions and this determines
the next layer's input dimension. The input dimension of the first layer is derived
from the size of the input data specified in the model.fit statement below.

Note: It is also possible to add an input layer that specifies the input
dimension of the first layer. For example:

tf.keras.Input(shape=(400,)), #specify input shape

We will include that here to illuminate some model sizing.

4.5 Softmax placement

As described in the lecture and the optional softmax lab, numerical stability is
improved if the softmax is grouped with the loss function rather than the output

25

15 10

s

in

s

out

W s

in

× s

out

b s

out

s

in

layer during training. This has implications when building the model and using the
model.
Building:

• The final Dense layer should use a 'linear' activation. This is effectively no
activation.

• The model.compile statement will indicate this by including
from_logits=True .

loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)

• This does not impact the form of the target. In the case of
SparseCategorialCrossentropy, the target is the expected digit, 0-9.

Using the model:

• The outputs are not probabilities. If output probabilities are desired, apply a
softmax function.

Exercise 2

Below, using Keras Sequential model and Dense Layer with a ReLU activation to
construct the three layer network described above.

Model: "my_model"

 Layer (type) Output Shape Param #

===

 L1 (Dense) (None, 25) 10025

 L2 (Dense) (None, 15) 390

 L3 (Dense) (None, 10) 160

===

Total params: 10,575

Trainable params: 10,575

Non-trainable params: 0

In [16]:
UNQ_C2

GRADED CELL: Sequential model

tf.random.set_seed(1234) # for consistent results

model = Sequential(

[

START CODE HERE ###

tf.keras.layers.InputLayer((400,)),

tf.keras.layers.Dense(25, activation="relu", name="L1"),

tf.keras.layers.Dense(15, activation="relu", name="L2"),

tf.keras.layers.Dense(10, activation="linear", name="L3")

END CODE HERE ###

], name = "my_model"

)

model.compile(loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits

In [17]:
model.summary()

Non-trainable params: 0

Expected Output (Click to expand) The `model.summary()` function

displays a useful summary of the model. Note, the names of the layers may vary as
they are auto-generated unless the name is specified.

Model: "my_model"

Layer (type) Output Shape

Param #

===

L1 (Dense) (None, 25)

10025

L2 (Dense) (None, 15) 390

L3 (Dense) (None, 10) 160

===

Total params: 10,575

Trainable params: 10,575

Non-trainable params: 0

Click for hints
tf.random.set_seed(1234)

model = Sequential(

[

START CODE HERE ###

tf.keras.Input(shape=(400,)), # @REPLACE

Dense(25, activation='relu', name = "L1"), # @REPLACE

Dense(15, activation='relu', name = "L2"), # @REPLACE

Dense(10, activation='linear', name = "L3"), # @REPLACE

END CODE HERE ###

], name = "my_model"

)

All tests passed!

The parameter counts shown in the summary correspond to the number of
elements in the weight and bias arrays as shown below.

Let's further examine the weights to verify that tensorflow produced the same
dimensions as we calculated above.

In [18]:
BEGIN UNIT TEST

test_model(model, 10, 400)

END UNIT TEST

In [19]:
[layer1, layer2, layer3] = model.layers

In [20]:
Examine Weights shapes

W1,b1 = layer1.get_weights()

b2 layer2 get_weights()

W1 shape = (400, 25), b1 shape = (25,)

W2 shape = (25, 15), b2 shape = (15,)

W3 shape = (15, 10), b3 shape = (10,)

Expected Output

W1 shape = (400, 25), b1 shape = (25,)

W2 shape = (25, 15), b2 shape = (15,)

W3 shape = (15, 10), b3 shape = (10,)

The following code:

• defines a loss function, SparseCategoricalCrossentropy and indicates
the softmax should be included with the loss calculation by adding
from_logits=True)

• defines an optimizer. A popular choice is Adaptive Moment (Adam) which was
described in lecture.

Epoch 1/40

157/157 [==============================] - 1s 2ms/step - loss: 1.7094

Epoch 2/40

157/157 [==============================] - 0s 2ms/step - loss: 0.7480

Epoch 3/40

157/157 [==============================] - 0s 2ms/step - loss: 0.4428

Epoch 4/40

157/157 [==============================] - 0s 2ms/step - loss: 0.3463

Epoch 5/40

157/157 [==============================] - 0s 2ms/step - loss: 0.2977

Epoch 6/40

157/157 [==============================] - 0s 2ms/step - loss: 0.2630

Epoch 7/40

157/157 [==============================] - 0s 2ms/step - loss: 0.2361

Epoch 8/40

157/157 [==============================] - 0s 2ms/step - loss: 0.2131

Epoch 9/40

157/157 [==============================] - 0s 2ms/step - loss: 0.2004

Epoch 10/40

157/157 [==============================] - 0s 2ms/step - loss: 0.1805

Epoch 11/40

157/157 [==============================] - 0s 2ms/step - loss: 0.1692

Epoch 12/40

157/157 [==============================] - 0s 2ms/step - loss: 0.1580

Epoch 13/40

157/157 [==============================] - 0s 2ms/step - loss: 0.1507

W2,b2 = layer2.get_weights()

W3,b3 = layer3.get_weights()

print(f"W1 shape = {W1.shape}, b1 shape = {b1.shape}")

print(f"W2 shape = {W2.shape}, b2 shape = {b2.shape}")

print(f"W3 shape = {W3.shape}, b3 shape = {b3.shape}")

In [21]:
model.compile(

loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),

optimizer=tf.keras.optimizers.Adam(learning_rate=0.001),

)

history = model.fit(

X,y,

epochs=40

)

157/157 [==============================] - 0s 2ms/step - loss: 0.1507

Epoch 14/40

157/157 [==============================] - 0s 2ms/step - loss: 0.1396

Epoch 15/40

157/157 [==============================] - 0s 2ms/step - loss: 0.1289

Epoch 16/40

157/157 [==============================] - 0s 2ms/step - loss: 0.1255

Epoch 17/40

157/157 [==============================] - 0s 2ms/step - loss: 0.1154

Epoch 18/40

157/157 [==============================] - 0s 2ms/step - loss: 0.1102

Epoch 19/40

157/157 [==============================] - 0s 2ms/step - loss: 0.1016

Epoch 20/40

157/157 [==============================] - 0s 2ms/step - loss: 0.0970

Epoch 21/40

157/157 [==============================] - 0s 2ms/step - loss: 0.0926

Epoch 22/40

157/157 [==============================] - 0s 2ms/step - loss: 0.0891

Epoch 23/40

157/157 [==============================] - 0s 2ms/step - loss: 0.0828

Epoch 24/40

157/157 [==============================] - 0s 2ms/step - loss: 0.0785

Epoch 25/40

157/157 [==============================] - 0s 2ms/step - loss: 0.0755

Epoch 26/40

157/157 [==============================] - 0s 2ms/step - loss: 0.0713

Epoch 27/40

157/157 [==============================] - 0s 2ms/step - loss: 0.0701

Epoch 28/40

157/157 [==============================] - 0s 2ms/step - loss: 0.0617

Epoch 29/40

157/157 [==============================] - 0s 2ms/step - loss: 0.0578

Epoch 30/40

157/157 [==============================] - 0s 2ms/step - loss: 0.0550

Epoch 31/40

157/157 [==============================] - 0s 2ms/step - loss: 0.0511

Epoch 32/40

157/157 [==============================] - 0s 2ms/step - loss: 0.0499

Epoch 33/40

157/157 [==============================] - 0s 2ms/step - loss: 0.0462

Epoch 34/40

157/157 [==============================] - 0s 2ms/step - loss: 0.0437

Epoch 35/40

157/157 [==============================] - 0s 2ms/step - loss: 0.0422

Epoch 36/40

157/157 [==============================] - 0s 2ms/step - loss: 0.0396

Epoch 37/40

157/157 [==============================] - 0s 2ms/step - loss: 0.0366

Epoch 38/40

157/157 [==============================] - 0s 2ms/step - loss: 0.0344

Epoch 39/40

157/157 [==============================] - 0s 2ms/step - loss: 0.0312

Epoch 40/40

157/157 [==============================] - 0s 2ms/step - loss: 0.0294

Epochs and batches

In the compile statement above, the number of epochs was set to 100. This
specifies that the entire data set should be applied during training 100 times.
During training, you see output describing the progress of training that looks like
this:

Epoch 1/100

157/157 [==============================] - 0s 1ms/step -

loss: 2.2770

The first line, Epoch 1/100 , describes which epoch the model is currently
running. For efficiency, the training data set is broken into 'batches'. The default
size of a batch in Tensorflow is 32. There are 5000 examples in our data set or
roughly 157 batches. The notation on the 2nd line 157/157 [==== is describing
which batch has been executed.

Loss (cost)

In course 1, we learned to track the progress of gradient descent by monitoring
the cost. Ideally, the cost will decrease as the number of iterations of the algorithm
increases. Tensorflow refers to the cost as loss . Above, you saw the loss
displayed each epoch as model.fit was executing. The .fit method returns a
variety of metrics including the loss. This is captured in the history variable
above. This can be used to examine the loss in a plot as shown below.

Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', '

home'), ('Back', 'Back to previous …

Prediction

To make a prediction, use Keras predict . Below, X[1015] contains an image of a
two.

In [22]:
plot_loss_tf(history)

In [23]:
image_of_two = X[1015]

display_digit(image_of_two)

prediction = model.predict(image_of_two.reshape(1,400)) # prediction

