
Optional Lab - Simple Neural Network
In this lab, we will build a small neural network using Numpy. It will be the same "coffee

roasting" network you implemented in Tensorflow.

In [ ]:

DataSet

This is the same data set as the previous lab.

In [ ]:

Let's plot the coffee roasting data below. The two features are Temperature in Celsius and

Duration in minutes. Coffee Roasting at Home (https://www.merchantsofgreencoffee.com

/how-to-roast-green-coffee-in-your-oven/) suggests that the duration is best kept between 12

and 15 minutes while the temp should be between 175 and 260 degrees Celsius. Of course,

as the temperature rises, the duration should shrink.

In [ ]:

Normalize Data

To match the previous lab, we'll normalize the data. Refer to that lab for more details

import numpy as np
import matplotlib.pyplot as plt
plt.style.use('./deeplearning.mplstyle')
import tensorflow as tf
from lab_utils_common import dlc, sigmoid
from lab_coffee_utils import load_coffee_data, plt_roast, plt_prob, plt_layer
import logging
logging.getLogger("tensorflow").setLevel(logging.ERROR)
tf autograph set_verbosity(0)

X,Y = load_coffee_data();
print(X shape Y shape)

plt_roast(X Y)
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In [ ]:

Numpy Model (Forward Prop in NumPy)

Let's build the "Coffee Roasting Network" described in lecture. There are two layers with

sigmoid activations.

As described in lecture, it is possible to build your own dense layer using NumPy. This can

then be utilized to build a multi-layer neural network.

In the first optional lab, you constructed a neuron in NumPy and in Tensorflow and noted

their similarity. A layer simply contains multiple neurons/units. As described in lecture, one

can utilize a for loop to visit each unit ( j ) in the layer and perform the dot product of the

weights for that unit ( W[:,j] ) and sum the bias for the unit ( b[j] ) to form z . An

activation function g(z)  can then be applied to that result. Let's try that below to build a

"dense layer" subroutine.

First, you will define the activation function g() . You will use the sigmoid()  function

which is already implemented for you in the lab_utils_common.py  file outside this

notebook.

In [ ]:

print(f"Temperature Max, Min pre normalization: {np.max(X[:,0]):0.2f}, 
print(f"Duration    Max, Min pre normalization: {np.max(X[:,1]):0.2f}, 
norm_l = tf.keras.layers.Normalization(axis=-1)
norm_l.adapt(X)  # learns mean, variance
Xn = norm_l(X)
print(f"Temperature Max, Min post normalization: {np.max(Xn[:,0]):0.2f}
print(f"Duration    Max, Min post normalization: { (Xn[:,1]):0.2f}

# Define the activation function
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Next, you will define the my_dense()  function which computes the activations of a dense

layer.

In [ ]:

Note: You can also implement the function above to accept g  as an additional parameter

(e.g. my_dense(a_in, W, b, g) ). In this notebook though, you will only use one type of

activation function (i.e. sigmoid) so it's okay to make it constant and define it outside the

function. That's what you did in the code above and it makes the function calls in the next

code cells simpler. Just keep in mind that passing it as a parameter is also an acceptable

implementation. You will see that in this week's assignment.

The following cell builds a two-layer neural network utilizing the my_dense  subroutine

above.

In [ ]:

We can copy trained weights and biases from the previous lab in Tensorflow.

In [ ]:

Predictions

Once you have a trained

model, you can then use it to

make predictions. Recall that

the output of our model is a

probability. In this case, the

probability of a good roast. To

make a decision, one must

apply the probability to a

threshold. In this case, we will

def my_dense(a_in, W, b):
"""

    Computes dense layer
    Args:
      a_in (ndarray (n, )) : Data, 1 example 
      W    (ndarray (n,j)) : Weight matrix, n features per unit, j units
      b    (ndarray (j, )) : bias vector, j units  
    Returns
      a_out (ndarray (j,))  : j units|
    """

units = W.shape[1]
a_out = np.zeros(units)
for j in range(units):               

w = W[:,j]                                    
z = np.dot(w, a_in) + b[j]         
a_out[j] = g(z)               

return(a_out)

def my_sequential(x, W1, b1, W2, b2):
a1 = my_dense(x,  W1, b1)
a2 = my_dense(a1, W2, b2)
return(a2)

W1_tmp = np.array( [[-8.93,  0.29, 12.9 ], [-0.1,  -7.32, 10.81]] )
b1_tmp = np.array( [-9.82, -9.28,  0.96] )
W2_tmp = np.array( [[-31.18], [-27.59], [-32.56]] )
b2_tmp np array( [15.41] )
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use 0.5

Let's start by writing a routine similar to Tensorflow's model.predict() . This will take a

matrix  with all  examples in the rows and make a prediction by running the model.� �

In [ ]:

We can try this routine on two examples:

In [ ]:

To convert the probabilities to a decision, we apply a threshold:

In [ ]:

This can be accomplished more succinctly:

In [ ]:

Network function

This graph shows the operation of the whole network and is identical to the Tensorflow

result from the previous lab. The left graph is the raw output of the final layer represented by

the blue shading. This is overlaid on the training data represented by the X's and O's.

The right graph is the output of the network after a decision threshold. The X's and O's here

correspond to decisions made by the network.

In [ ]:

Congratulations!

You have built a small neural network in NumPy. Hopefully this lab revealed the fairly simple

and familiar functions which make up a layer in a neural network.

def my_predict(X, W1, b1, W2, b2):
m = X.shape[0]
p = np.zeros((m,1))
for i in range(m):

p[i,0] = my_sequential(X[i], W1, b1, W2, b2)
return( )

X_tst = np.array([
    [200,13.9],  # postive example
    [200,17]])   # negative example
X_tstn = norm_l(X_tst)  # remember to normalize
predictions my_predict(X_tstn W1_tmp b1_tmp W2_tmp b2_tmp)

yhat = np.zeros_like(predictions)
for i in range(len(predictions)):

if predictions[i] >= 0.5:
yhat[i] = 1

else:
yhat[i] = 0

print(f"decisions = \n{yhat}")

yhat = (predictions >= 0.5).astype(int)
print(f"decisions = \n{yhat}")

netf= lambda x : my_predict(norm_l(x),W1_tmp, b1_tmp, W2_tmp, b2_tmp)
plt_network(X Y netf)
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