
Optional Lab - Simple Neural Network
In this lab we will build a small neural network using Tensorflow.

In [3]:

DataSet

In [2]:

Let's plot the coffee roasting data below. The two features are Temperature in Celsius and

Duration in minutes. Coffee Roasting at Home (https://www.merchantsofgreencoffee.com

/how-to-roast-green-coffee-in-your-oven/) suggests that the duration is best kept between 12

and 15 minutes while the temp should be between 175 and 260 degrees Celsius. Of course,

as temperature rises, the duration should shrink.

(200, 2) (200, 1)

import numpy as np
import matplotlib.pyplot as plt
plt.style.use('./deeplearning.mplstyle')
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from lab_utils_common import dlc
from lab_coffee_utils import load_coffee_data, plt_roast, plt_prob, plt_layer
import logging
logging.getLogger("tensorflow").setLevel(logging.ERROR)
tf.autograph.set_verbosity(0)

X,Y = load_coffee_data();
print(X shape Y shape)

1
2
3
4
5
6
7
8
9

10
11
12

1
2

http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Lab02_CoffeeRoasting_TF.ipynb#Optional-Lab---Simple-Neural-Network
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Lab02_CoffeeRoasting_TF.ipynb#Optional-Lab---Simple-Neural-Network
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Lab02_CoffeeRoasting_TF.ipynb#DataSet
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Lab02_CoffeeRoasting_TF.ipynb#DataSet
https://www.merchantsofgreencoffee.com/how-to-roast-green-coffee-in-your-oven/
https://www.merchantsofgreencoffee.com/how-to-roast-green-coffee-in-your-oven/
https://www.merchantsofgreencoffee.com/how-to-roast-green-coffee-in-your-oven/
https://www.merchantsofgreencoffee.com/how-to-roast-green-coffee-in-your-oven/
https://www.merchantsofgreencoffee.com/how-to-roast-green-coffee-in-your-oven/
https://www.merchantsofgreencoffee.com/how-to-roast-green-coffee-in-your-oven/
https://www.merchantsofgreencoffee.com/how-to-roast-green-coffee-in-your-oven/
https://www.merchantsofgreencoffee.com/how-to-roast-green-coffee-in-your-oven/
https://www.merchantsofgreencoffee.com/how-to-roast-green-coffee-in-your-oven/

In [4]:

Normalize Data

Fitting the weights to the data (back-propagation, covered in next week's lectures) will

proceed more quickly if the data is normalized. This is the same procedure you used in

Course 1 where features in the data are each normalized to have a similar range. The

procedure below uses a Keras normalization layer (https://keras.io/api/layers

/preprocessing_layers/numerical/normalization/). It has the following steps:

• create a "Normalization Layer". Note, as applied here, this is not a layer in your model.

• 'adapt' the data. This learns the mean and variance of the data set and saves the

values internally.

• normalize the data.

It is important to apply normalization to any future data that utilizes the learned model.

In [5]:

Tile/copy our data to increase the training set size and reduce the number of training

epochs.

In [6]:

Temperature Max, Min pre normalization: 284.99, 151.32
Duration Max, Min pre normalization: 15.45, 11.51
Temperature Max, Min post normalization: 1.66, -1.69
Duration Max, Min post normalization: 1.79, -1.70

(200000, 2) (200000, 1)

plt_roast(X Y)

print(f"Temperature Max, Min pre normalization: {np.max(X[:,0]):0.2f},
print(f"Duration Max, Min pre normalization: {np.max(X[:,1]):0.2f},
norm_l = tf.keras.layers.Normalization(axis=-1)
norm_l.adapt(X) # learns mean, variance
Xn = norm_l(X)
print(f"Temperature Max, Min post normalization: {np.max(Xn[:,0]):0.2f}
print(f"Duration Max, Min post normalization: {np max(Xn[:,1]):0.2f}

Xt = np.tile(Xn,(1000,1))
Yt= np.tile(Y,(1000,1))
print(Xt shape Yt shape)

1

1
2
3
4
5
6
7

1
2
3

http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Lab02_CoffeeRoasting_TF.ipynb#Normalize-Data
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Lab02_CoffeeRoasting_TF.ipynb#Normalize-Data
https://keras.io/api/layers/preprocessing_layers/numerical/normalization/
https://keras.io/api/layers/preprocessing_layers/numerical/normalization/
https://keras.io/api/layers/preprocessing_layers/numerical/normalization/
https://keras.io/api/layers/preprocessing_layers/numerical/normalization/
https://keras.io/api/layers/preprocessing_layers/numerical/normalization/
https://keras.io/api/layers/preprocessing_layers/numerical/normalization/
https://keras.io/api/layers/preprocessing_layers/numerical/normalization/
https://keras.io/api/layers/preprocessing_layers/numerical/normalization/
https://keras.io/api/layers/preprocessing_layers/numerical/normalization/

Tensorflow Model

Model

Let's build the "Coffee Roasting Network" described in lecture. There are two layers with

sigmoid activations as shown below:

In [7]:

Note 1: The tf.keras.Input(shape=(2,)), specifies the expected

shape of the input. This allows Tensorflow to size the weights and bias

parameters at this point. This is useful when exploring Tensorflow models.

This statement can be omitted in practice and Tensorflow will size the

network parameters when the input data is specified in the model.fit

statement.

Note 2: Including the sigmoid activation in the final layer is not considered

best practice. It would instead be accounted for in the loss which improves

numerical stability. This will be described in more detail in a later lab.

The model.summary() provides a description of the network:

In [8]:

The parameter counts shown in the summary correspond to the number of elements in the

weight and bias arrays as shown below.

Model: "sequential"

 Layer (type) Output Shape Param #
===
 layer1 (Dense) (None, 3) 9

 layer2 (Dense) (None, 1) 4

===
Total params: 13
Trainable params: 13
Non-trainable params: 0

tf.random.set_seed(1234) # applied to achieve consistent results
model = Sequential(
 [

tf.keras.Input(shape=(2,)),
Dense(3, activation='sigmoid', name = 'layer1'),
Dense(1, activation='sigmoid', name = 'layer2')

]
)

model summary()

1
2
3
4
5
6
7
8

1

http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Lab02_CoffeeRoasting_TF.ipynb#Tensorflow-Model
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Lab02_CoffeeRoasting_TF.ipynb#Tensorflow-Model
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Lab02_CoffeeRoasting_TF.ipynb#Model
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Lab02_CoffeeRoasting_TF.ipynb#Model

In [9]:

Let's examine the weights and biases Tensorflow has instantiated. The weights should

be of size (number of features in input, number of units in the layer) while the bias size

should match the number of units in the layer:

• In the first layer with 3 units, we expect W to have a size of (2,3) and should have 3

elements.

• In the second layer with 1 unit, we expect W to have a size of (3,1) and should have 1

element.

�

�

�

�

In [10]:

The following statements will be described in detail in Week2. For now:

• The model.compile statement defines a loss function and specifies a compile

optimization.

• The model.fit statement runs gradient descent and fits the weights to the data.

L1 params = 9 , L2 params = 4

W1(2, 3):
 [[0.08 -0.3 0.18]
 [-0.56 -0.15 0.89]]
b1(3,): [0. 0. 0.]
W2(3, 1):
 [[-0.43]
 [-0.88]
 [0.36]]
b2(1,): [0.]

L1_num_params = 2 * 3 + 3 # W1 parameters + b1 parameters
L2_num_params = 3 * 1 + 1 # W2 parameters + b2 parameters
print("L1 params = " L1_num_params ", L2 params = " L2_num_params)

W1, b1 = model.get_layer("layer1").get_weights()
W2, b2 = model.get_layer("layer2").get_weights()
print(f"W1{W1.shape}:\n", W1, f"\nb1{b1.shape}:", b1)
print(f"W2{W2 shape}:\n" W2 f"\nb2{b2 shape}:" b2)

1
2
3

1
2
3
4

In [11]:

Epochs and batches

In the compile statement above, the number of epochs was set to 10. This specifies that

the entire data set should be applied during training 10 times. During training, you see

output describing the progress of training that looks like this:

Epoch 1/10

6250/6250 [==============================] - 6s 910us/step - loss:

0.1782

The first line, Epoch 1/10 , describes which epoch the model is currently running. For

efficiency, the training data set is broken into 'batches'. The default size of a batch in

Tensorflow is 32. There are 200000 examples in our expanded data set or 6250 batches.

The notation on the 2nd line 6250/6250 [==== is describing which batch has been

executed.

Updated Weights

After fitting, the weights have been updated:

Epoch 1/10
6250/6250 [==============================] - 6s 890us/step - loss: 0.1782
Epoch 2/10
6250/6250 [==============================] - 5s 874us/step - loss: 0.1165
Epoch 3/10
6250/6250 [==============================] - 5s 860us/step - loss: 0.0426
Epoch 4/10
6250/6250 [==============================] - 6s 892us/step - loss: 0.0160
Epoch 5/10
6250/6250 [==============================] - 6s 889us/step - loss: 0.0104
Epoch 6/10
6250/6250 [==============================] - 6s 884us/step - loss: 0.0073
Epoch 7/10
6250/6250 [==============================] - 6s 896us/step - loss: 0.0052
Epoch 8/10
6250/6250 [==============================] - 5s 874us/step - loss: 0.0037
Epoch 9/10
6250/6250 [==============================] - 6s 882us/step - loss: 0.0027
Epoch 10/10
6250/6250 [==============================] - 6s 884us/step - loss: 0.0020

model.compile(
loss = tf.keras.losses.BinaryCrossentropy(),
optimizer = tf.keras.optimizers.Adam(learning_rate=0.01),

)

model.fit(
Xt,Yt,
epochs=10,

)

1
2
3
4
5
6
7
8
9

http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Lab02_CoffeeRoasting_TF.ipynb#Epochs-and-batches
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Lab02_CoffeeRoasting_TF.ipynb#Epochs-and-batches
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Lab02_CoffeeRoasting_TF.ipynb#Updated-Weights
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Lab02_CoffeeRoasting_TF.ipynb#Updated-Weights

In [12]:

Next, we will load some saved weights from a previous training run. This is so that this

notebook remains robust to changes in Tensorflow over time. Different training runs can

produce somewhat different results and the discussion below applies to a particular solution.

Feel free to re-run the notebook with this cell commented out to see the difference.

In [13]:

Predictions

Once you have a trained

model, you can then use it to

make predictions. Recall that

the output of our model is a

probability. In this case, the

probability of a good roast. To

make a decision, one must

apply the probability to a

threshold. In this case, we will

use 0.5

Let's start by creating input data. The model is expecting one or more examples where

examples are in the rows of matrix. In this case, we have two features so the matrix will be

(m,2) where m is the number of examples. Recall, we have normalized the input features so

we must normalize our test data as well.

To make a prediction, you apply the predict method.

W1:
 [[-0.13 14.3 -11.1]
 [-8.92 11.85 -0.25]]
b1: [-11.16 1.76 -12.1]
W2:
 [[-45.71]
 [-42.95]
 [-50.19]]
b2: [26.14]

W1, b1 = model.get_layer("layer1").get_weights()
W2, b2 = model.get_layer("layer2").get_weights()
print("W1:\n", W1, "\nb1:", b1)
print("W2:\n" W2 "\nb2:" b2)

W1 = np.array([
 [-8.94, 0.29, 12.89],
 [-0.17, -7.34, 10.79]])
b1 = np.array([-9.87, -9.28, 1.01])
W2 = np.array([
 [-31.38],
 [-27.86],
 [-32.79]])
b2 = np.array([15.54])
model.get_layer("layer1").set_weights([W1,b1])
model get_layer("layer2").set_weights([W2 b2])

1
2
3
4

1
2
3
4
5
6
7
8
9

10
11

http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Lab02_CoffeeRoasting_TF.ipynb#Predictions
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Lab02_CoffeeRoasting_TF.ipynb#Predictions

In [15]:

To convert the probabilities to a decision, we apply a threshold:

In [16]:

This can be accomplished more succinctly:

In [17]:

Layer Functions

Let's examine the functions of the units to determine their role in the coffee roasting

decision. We will plot the output of each node for all values of the inputs (duration,temp).

Each unit is a logistic function whose output can range from zero to one. The shading in the

graph represents the output value.

Note: In labs we typically number things starting at zero while the lectures

may start with 1.

predictions =
 [[9.63e-01]
 [3.03e-08]]

decisions =
[[1.]
 [0.]]

decisions =
[[1]
 [0]]

X_test = np.array([
 [200,13.9], # postive example
 [200,17]]) # negative example
X_testn = norm_l(X_test)
predictions = model.predict(X_testn)
print("predictions = \n" predictions)

yhat = np.zeros_like(predictions)
for i in range(len(predictions)):

if predictions[i] >= 0.5:
yhat[i] = 1

else:
yhat[i] = 0

print(f"decisions = \n{yhat}")

yhat = (predictions >= 0.5).astype(int)
print(f"decisions = \n{yhat}")

1
2
3
4
5
6

1
2
3
4
5
6
7

1
2

http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Lab02_CoffeeRoasting_TF.ipynb#Layer-Functions
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Lab02_CoffeeRoasting_TF.ipynb#Layer-Functions

In [19]:

The shading shows that each unit is responsible for a different "bad roast" region. unit 0 has

larger values when the temperature is too low. unit 1 has larger values when the duration is

too short and unit 2 has larger values for bad combinations of time/temp. It is worth noting

that the network learned these functions on its own through the process of gradient descent.

They are very much the same sort of functions a person might choose to make the same

decisions.

The function plot of the final layer is a bit more difficult to visualize. It's inputs are the output

of the first layer. We know that the first layer uses sigmoids so their output range is between

zero and one. We can create a 3-D plot that calculates the output for all possible

combinations of the three inputs. This is shown below. Above, high output values

correspond to 'bad roast' area's. Below, the maximum output is in area's where the three

inputs are small values corresponding to 'good roast' area's.

In [20]:

The final graph shows the whole network in action.

The left graph is the raw output of the final layer represented by the blue shading. This is

overlaid on the training data represented by the X's and O's.

The right graph is the output of the network after a decision threshold. The X's and O's here

correspond to decisions made by the network.

The following takes a moment to run

plt_layer(X Y reshape(1,),W1 b1 norm_l)

plt_output_unit(W2 b2)

1

1

In [22]:

Congratulations!

You have built a small neural network in Tensorflow. The network demonstrated the ability of

neural networks to handle complex decisions by dividing the decisions between multiple

units.

In []:

netf= lambda x : model.predict(norm_l(x))
plt_network(X Y netf)

1
2

1

http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Lab02_CoffeeRoasting_TF.ipynb#Congratulations!
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Lab02_CoffeeRoasting_TF.ipynb#Congratulations!

