
Practice Lab: Neural Networks for
Handwritten Digit Recognition, Binary
In this exercise, you will use a neural network to recognize the hand-written digits zero and

one.

Outline
• 1 - Packages

• 2 - Neural Networks

▪ 2.1 Problem Statement

▪ 2.2 Dataset

▪ 2.3 Model representation

▪ 2.4 Tensorflow Model Implementation

◦ Exercise 1

▪ 2.5 NumPy Model Implementation (Forward Prop in NumPy)

◦ Exercise 2

▪ 2.6 Vectorized NumPy Model Implementation (Optional)

◦ Exercise 3

▪ 2.7 Congratulations!

▪ 2.8 NumPy Broadcasting Tutorial (Optional)

NOTE: To prevent errors from the autograder, you are not allowed to edit or delete non-

graded cells in this notebook . Please also refrain from adding any new cells. Once you

have passed this assignment and want to experiment with any of the non-graded code,

you may follow the instructions at the bottom of this notebook.

1 - Packages

First, let's run the cell below to import all the packages that you will need during this

assignment.

• numpy (https://numpy.org/) is the fundamental package for scientific computing with

Python.

• matplotlib (http://matplotlib.org) is a popular library to plot graphs in Python.

• tensorflow (https://www.tensorflow.org/) a popular platform for machine learning.

http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Assignment.ipynb#Practice-Lab:-Neural-Networks-for-Handwritten-Digit-Recognition,-Binary
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Assignment.ipynb#Practice-Lab:-Neural-Networks-for-Handwritten-Digit-Recognition,-Binary
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Assignment.ipynb#Outline
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Assignment.ipynb#Outline
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Assignment.ipynb#1
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Assignment.ipynb#1
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Assignment.ipynb#2
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Assignment.ipynb#2
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Assignment.ipynb#2.1
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Assignment.ipynb#2.1
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Assignment.ipynb#2.2
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Assignment.ipynb#2.2
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Assignment.ipynb#2.3
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Assignment.ipynb#2.3
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Assignment.ipynb#2.4
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Assignment.ipynb#2.4
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Assignment.ipynb#ex01
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Assignment.ipynb#ex01
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Assignment.ipynb#2.5
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Assignment.ipynb#2.5
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Assignment.ipynb#ex02
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Assignment.ipynb#ex02
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Assignment.ipynb#2.6
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Assignment.ipynb#2.6
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Assignment.ipynb#ex03
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Assignment.ipynb#ex03
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Assignment.ipynb#2.7
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Assignment.ipynb#2.7
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Assignment.ipynb#2.8
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Assignment.ipynb#2.8
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Assignment.ipynb#1---Packages
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Assignment.ipynb#1---Packages
https://numpy.org/
https://numpy.org/
https://numpy.org/
https://numpy.org/
https://numpy.org/
https://numpy.org/
http://matplotlib.org/
http://matplotlib.org/
http://matplotlib.org/
http://matplotlib.org/
http://matplotlib.org/
http://matplotlib.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/

In [8]:

Tensorflow and Keras

Tensorflow is a machine learning package developed by Google. In 2019, Google integrated

Keras into Tensorflow and released Tensorflow 2.0. Keras is a framework developed

independently by François Chollet that creates a simple, layer-centric interface to

Tensorflow. This course will be using the Keras interface.

2 - Neural Networks

In Course 1, you implemented logistic regression. This was extended to handle non-linear

boundaries using polynomial regression. For even more complex scenarios such as image

recognition, neural networks are preferred.

2.1 Problem Statement

In this exercise, you will use a neural network to recognize two handwritten digits, zero and

one. This is a binary classification task. Automated handwritten digit recognition is widely

used today - from recognizing zip codes (postal codes) on mail envelopes to recognizing

amounts written on bank checks. You will extend this network to recognize all 10 digits (0-9)

in a future assignment.

This exercise will show you how the methods you have learned can be used for this

classification task.

2.2 Dataset

You will start by loading the dataset for this task.

• The load_data() function shown below loads the data into variables X and y

• The data set contains 1000 training examples of handwritten digits , here limited to

zero and one.

▪ Each training example is a 20-pixel x 20-pixel grayscale image of the digit.

◦ Each pixel is represented by a floating-point number indicating the grayscale

intensity at that location.

◦ The 20 by 20 grid of pixels is “unrolled” into a 400-dimensional vector.

◦ Each training example becomes a single row in our data matrix X .

◦ This gives us a 1000 x 400 matrix X where every row is a training example of

a handwritten digit image.

1

import numpy as np
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
import matplotlib.pyplot as plt
from autils import *
%matplotlib inline

import logging
logging.getLogger("tensorflow").setLevel(logging.ERROR)
tf autograph set_verbosity(0)

1
2
3
4
5
6
7
8
9

10
11

http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Assignment.ipynb#2---Neural-Networks
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Assignment.ipynb#2---Neural-Networks
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Assignment.ipynb#2.1-Problem-Statement
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Assignment.ipynb#2.1-Problem-Statement
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Assignment.ipynb#2.2-Dataset
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Assignment.ipynb#2.2-Dataset

• The second part of the training set is a 1000 x 1 dimensional vector y that contains

labels for the training set

▪ y = 0 if the image is of the digit 0 , y = 1 if the image is of the digit 1 .

� =

− − −() − −−�(1)

− − −() − −−�(2)

⋮
− − −() − −−�(�)

1

In [9]:

2.2.1 View the variables

Let's get more familiar with your dataset.

• A good place to start is to print out each variable and see what it contains.

The code below prints elements of the variables X and y .

In [10]:

In [11]:

2.2.2 Check the dimensions of your variables

Another way to get familiar with your data is to view its dimensions. Please print the shape

of X and y and see how many training examples you have in your dataset.

The first element of X is: [0.00000000e+00 0.00000000e+00 0.00000000e+
00 0.00000000e+00
 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
 0.00000000e+00 0.00000000e+00 0.00000000e+00 8.56059680e-06
 1.94035948e-06 -7.37438725e-04 -8.13403799e-03 -1.86104473e-02
 -1.87412865e-02 -1.87572508e-02 -1.90963542e-02 -1.64039011e-02

The first element of y is: 0
The last element of y is: 1

load dataset
X load_data()

print ('The first element of X is: ' X[0])

print ('The first element of y is: ', y[0,0])
print ('The last element of y is: ' [1 0])

1
2

1

1
2

http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Assignment.ipynb#2.2.1-View-the-variables
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Assignment.ipynb#2.2.1-View-the-variables
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Assignment.ipynb#2.2.2-Check-the-dimensions-of-your-variables
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Assignment.ipynb#2.2.2-Check-the-dimensions-of-your-variables

In [12]:

2.2.3 Visualizing the Data

You will begin by visualizing a subset of the training set.

• In the cell below, the code randomly selects 64 rows from X , maps each row back to a

20 pixel by 20 pixel grayscale image and displays the images together.

• The label for each image is displayed above the image

The shape of X is: (1000, 400)
The shape of y is: (1000, 1)

print ('The shape of X is: ' + str(X.shape))
print ('The shape of y is: ' str(shape))

1
2

http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Assignment.ipynb#2.2.3-Visualizing-the-Data
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Assignment.ipynb#2.2.3-Visualizing-the-Data

In [13]: import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
You do not need to modify anything in this cell

m, n = X.shape

fig, axes = plt.subplots(8,8, figsize=(8,8))
fig.tight_layout(pad=0.1)

for i,ax in enumerate(axes.flat):
Select random indices
random_index = np.random.randint(m)

Select rows corresponding to the random indices and
reshape the image
X_random_reshaped = X[random_index].reshape((20,20)).T

Display the image
ax.imshow(X_random_reshaped, cmap='gray')

Display the label above the image
ax.set_title(y[random_index,0])

set_axis_off()

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

1

• The parameters have dimensions that are sized for a neural network with units in

layer 1, units in layer 2 and output unit in layer 3.

▪ Recall that the dimensions of these parameters are determined as follows:

◦ If network has units in a layer and units in the next layer, then

◦ will be of dimension .

◦ will a vector with elements

▪ Therefore, the shapes of W , and b , are

◦ layer1: The shape of W1 is (400, 25) and the shape of b1 is (25,)

◦ layer2: The shape of W2 is (25, 15) and the shape of b2 is: (15,)

◦ layer3: The shape of W3 is (15, 1) and the shape of b3 is: (1,)

Note: The bias vector b could be represented as a 1-D (n,) or

2-D (1,n) array. Tensorflow utilizes a 1-D representation and

this lab will maintain that convention.

25
15 1

��� ����
� ×��� ����
� ����

2.4 Tensorflow Model Implementation

Tensorflow models are built layer by layer. A layer's input dimensions (above) are

calculated for you. You specify a layer's output dimensions and this determines the next

layer's input dimension. The input dimension of the first layer is derived from the size of the

input data specified in the model.fit statement below.

Note: It is also possible to add an input layer that specifies the input

dimension of the first layer. For example:

tf.keras.Input(shape=(400,)), #specify input shape

We will include that here to illuminate some model sizing.

���

Exercise 1

Below, using Keras Sequential model (https://keras.io/guides/sequential_model/) and Dense

Layer (https://keras.io/api/layers/core_layers/dense/) with a sigmoid activation to construct

the network described above.

2.3 Model representation

The neural network you will use in this assignment is shown in the
figure below.
- This has three dense layers with sigmoid activations.

- Recall that our inputs are pixel values of digit images.
- Since the images are of size 20×20, this gives us 400

inputs

2

3
4

5
6
7

8
9

http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Assignment.ipynb#2.4-Tensorflow-Model-Implementation
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Assignment.ipynb#2.4-Tensorflow-Model-Implementation
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Assignment.ipynb#Exercise-1
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Assignment.ipynb#Exercise-1
https://keras.io/guides/sequential_model/
https://keras.io/guides/sequential_model/
https://keras.io/guides/sequential_model/
https://keras.io/guides/sequential_model/
https://keras.io/guides/sequential_model/
https://keras.io/guides/sequential_model/
https://keras.io/api/layers/core_layers/dense/
https://keras.io/api/layers/core_layers/dense/
https://keras.io/api/layers/core_layers/dense/
https://keras.io/api/layers/core_layers/dense/
https://keras.io/api/layers/core_layers/dense/
https://keras.io/api/layers/core_layers/dense/
https://keras.io/api/layers/core_layers/dense/
https://keras.io/api/layers/core_layers/dense/

In [26]:

In [27]:

Expected Output (Click to Expand)

Click for hints

In [28]:

The parameter counts shown in the summary correspond to the number of elements in the

weight and bias arrays as shown below.

In [29]:

We can examine details of the model by first extracting the layers with model.layers and

then extracting the weights with layerx.get_weights() as shown below.

Model: "my_model"

 Layer (type) Output Shape Param #
===
 dense (Dense) (None, 25) 10025

 dense_1 (Dense) (None, 15) 390

 dense_2 (Dense) (None, 1) 16

===
Total params: 10,431
Trainable params: 10,431
Non-trainable params: 0

All tests passed!

L1 params = 10025 , L2 params = 390 , L3 params = 16

UNQ_C1
GRADED CELL: Sequential model

model = Sequential(
 [

tf.keras.Input(shape=(400,)), #specify input size
START CODE HERE ###
tf.keras.layers.Dense(25,activation="sigmoid"),
tf.keras.layers.Dense(15,activation="sigmoid"),
tf.keras.layers.Dense(1,activation="sigmoid")

END CODE HERE ###
], name = "my_model"
)

model summary()

UNIT TESTS
from public_tests import *

test_c1(model)

L1_num_params = 400 * 25 + 25 # W1 parameters + b1 parameters
L2_num_params = 25 * 15 + 15 # W2 parameters + b2 parameters
L3_num_params = 15 * 1 + 1 # W3 parameters + b3 parameters
print("L1 params = " L1_num_params ", L2 params = " L2_num_params ", L3 params = "

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

1

1
2
3
4

1
2
3
4

In [30]:

In [31]:

Expected Output

W1 shape = (400, 25), b1 shape = (25,)

W2 shape = (25, 15), b2 shape = (15,)

W3 shape = (15, 1), b3 shape = (1,)

xx.get_weights returns a NumPy array. One can also access the weights directly in their

tensor form. Note the shape of the tensors in the final layer.

In [32]:

The following code will define a loss function and run gradient descent to fit the weights of

the model to the training data. This will be explained in more detail in the following week.

W1 shape = (400, 25), b1 shape = (25,)
W2 shape = (25, 15), b2 shape = (15,)
W3 shape = (15, 1), b3 shape = (1,)

[<tf.Variable 'dense_2/kernel:0' shape=(15, 1) dtype=float32, numpy=
array([[-0.51015526],
 [0.3259778],
 [0.36731273],
 [0.31615472],
 [0.11634964],
 [0.02313489],
 [0.25605255],
 [0.23651499],
 [0.12719369],
 [0.07334226],
 [-0.06693125],
 [0.5903911],
 [0.20416278],
 [-0.04257739],
 [0.45079046]], dtype=float32)>, <tf.Variable 'dense_2/bias:0' shap
e=(1,) dtype=float32, numpy=array([0.], dtype=float32)>]

[layer1 layer2 layer3] model layers

Examine Weights shapes
W1,b1 = layer1.get_weights()
W2,b2 = layer2.get_weights()
W3,b3 = layer3.get_weights()
print(f"W1 shape = {W1.shape}, b1 shape = {b1.shape}")
print(f"W2 shape = {W2.shape}, b2 shape = {b2.shape}")
print(f"W3 shape = {W3 shape}, b3 shape = {b3 shape}")

print(model layers[2].weights)

1

1
2
3
4
5
6
7

1

In [33]:

To run the model on an example to make a prediction, use Keras predict

(https://www.tensorflow.org/api_docs/python/tf/keras/Model). The input to predict is an

array so the single example is reshaped to be two dimensional.

In [34]:

The output of the model is interpreted as a probability. In the first example above, the input

is a zero. The model predicts the probability that the input is a one is nearly zero. In the

second example, the input is a one. The model predicts the probability that the input is a

one is nearly one. As in the case of logistic regression, the probability is compared to a

threshold to make a final prediction.

In [35]:

Let's compare the predictions vs the labels for a random sample of 64 digits. This takes a

moment to run.

Epoch 1/20
32/32 [==============================] - 0s 1ms/step - loss: 0.7657
Epoch 2/20
32/32 [==============================] - 0s 2ms/step - loss: 0.6158
Epoch 3/20
32/32 [==============================] - 0s 1ms/step - loss: 0.5069
Epoch 4/20
32/32 [==============================] - 0s 1ms/step - loss: 0.4035
Epoch 5/20
32/32 [==============================] - 0s 2ms/step - loss: 0.3204
Epoch 6/20
32/32 [==============================] - 0s 1ms/step - loss: 0.2590
Epoch 7/20
32/32 [==============================] - 0s 2ms/step - loss: 0.2143
Epoch 8/20
32/32 [==============================] - 0s 1ms/step - loss: 0.1810
Epoch 9/20
32/32 [==============================] - 0s 2ms/step - loss: 0.1558
Epoch 10/20
32/32 [==============================] - 0s 2ms/step - loss: 0.1363

 predicting a zero: [[0.07123333]]
 predicting a one: [[0.9788972]]

prediction after threshold: 1

model.compile(
loss=tf.keras.losses.BinaryCrossentropy(),
optimizer=tf.keras.optimizers.Adam(0.001),

)

model.fit(
X,y,
epochs=20

)

prediction = model.predict(X[0].reshape(1,400)) # a zero
print(f" predicting a zero: {prediction}")
prediction = model.predict(X[500].reshape(1,400)) # a one
print(f" predicting a one: {prediction}")

if prediction >= 0.5:
yhat = 1

else:
yhat = 0

print(f"prediction after threshold: {yhat}")

1
2
3
4
5
6
7
8
9

1
2
3
4

1
2
3
4
5

https://www.tensorflow.org/api_docs/python/tf/keras/Model
https://www.tensorflow.org/api_docs/python/tf/keras/Model
https://www.tensorflow.org/api_docs/python/tf/keras/Model
https://www.tensorflow.org/api_docs/python/tf/keras/Model
https://www.tensorflow.org/api_docs/python/tf/keras/Model
https://www.tensorflow.org/api_docs/python/tf/keras/Model
https://www.tensorflow.org/api_docs/python/tf/keras/Model
https://www.tensorflow.org/api_docs/python/tf/keras/Model
https://www.tensorflow.org/api_docs/python/tf/keras/Model

In [36]: import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
You do not need to modify anything in this cell

m, n = X.shape

fig, axes = plt.subplots(8,8, figsize=(8,8))
fig.tight_layout(pad=0.1,rect=[0, 0.03, 1, 0.92]) #[left, bottom, right, top]

for i,ax in enumerate(axes.flat):
Select random indices
random_index = np.random.randint(m)

Select rows corresponding to the random indices and
reshape the image
X_random_reshaped = X[random_index].reshape((20,20)).T

Display the image
ax.imshow(X_random_reshaped, cmap='gray')

Predict using the Neural Network
prediction = model.predict(X[random_index].reshape(1,400))
if prediction >= 0.5:

yhat = 1
else:

yhat = 0

Display the label above the image
ax.set_title(f"{y[random_index,0]},{yhat}")
ax.set_axis_off()

fig.suptitle("Label, yhat", fontsize=16)
plt show()

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

2.5 NumPy Model Implementation (Forward Prop in NumPy)

As described in lecture, it is possible to build your own dense layer using NumPy. This can

then be utilized to build a multi-layer neural network.

http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Assignment.ipynb#2.5-NumPy-Model-Implementation-(Forward-Prop-in-NumPy)
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Assignment.ipynb#2.5-NumPy-Model-Implementation-(Forward-Prop-in-NumPy)

Exercise 2

Below, build a dense layer subroutine. The example in lecture utilized a for loop to visit each

unit (j) in the layer and perform the dot product of the weights for that unit (W[:,j]) and

sum the bias for the unit (b[j]) to form z . An activation function g(z) is then applied to

that result. This section will not utilize some of the matrix operations described in the

optional lectures. These will be explored in a later section.

In [37]:

In [38]:

Expected Output

[0.54735762 0.57932425 0.61063923]

Click for hints

In [39]:

[0.54735762 0.57932425 0.61063923]

All tests passed!

UNQ_C2
GRADED FUNCTION: my_dense

def my_dense(a_in, W, b, g):
"""

 Computes dense layer
 Args:
 a_in (ndarray (n,)) : Data, 1 example
 W (ndarray (n,j)) : Weight matrix, n features per unit, j units
 b (ndarray (j,)) : bias vector, j units
 g activation function (e.g. sigmoid, relu..)
 Returns
 a_out (ndarray (j,)) : j units
 """

units = W.shape[1]
a_out = np.zeros(units)

START CODE HERE ###
for j in range(units):

w = W[:,j]
z = np.dot(w, a_in) + b[j]
a_out[j] = g(z)

return(a_out)

END CODE HERE ###
return(a_out)

Quick Check
x_tst = 0.1*np.arange(1,3,1).reshape(2,) # (1 examples, 2 features)
W_tst = 0.1*np.arange(1,7,1).reshape(2,3) # (2 input features, 3 output features)
b_tst = 0.1*np.arange(1,4,1).reshape(3,) # (3 features)
A_tst = my_dense(x_tst, W_tst, b_tst, sigmoid)
print(A_tst)

UNIT TESTS

test_c2(my_dense)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

1
2
3
4
5
6

1
2
3

http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Assignment.ipynb#Exercise-2
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Assignment.ipynb#Exercise-2

The following cell builds a three-layer neural network utilizing the my_dense subroutine

above.

In [40]:

We can copy trained weights and biases from Tensorflow.

In [41]:

In [42]:

Run the following cell to see predictions from both the Numpy model and the Tensorflow

model. This takes a moment to run.

yhat = 0 label= 0
yhat = 1 label= 1

def my_sequential(x, W1, b1, W2, b2, W3, b3):
a1 = my_dense(x, W1, b1, sigmoid)
a2 = my_dense(a1, W2, b2, sigmoid)
a3 = my_dense(a2, W3, b3, sigmoid)
return(a3)

W1_tmp,b1_tmp = layer1.get_weights()
W2_tmp,b2_tmp = layer2.get_weights()
W3_tmp b3_tmp layer3 get_weights()

make predictions
prediction = my_sequential(X[0], W1_tmp, b1_tmp, W2_tmp, b2_tmp, W3_tmp
if prediction >= 0.5:

yhat = 1
else:

yhat = 0
print("yhat = ", yhat, " label= ", y[0,0])
prediction = my_sequential(X[500], W1_tmp, b1_tmp, W2_tmp, b2_tmp, W3_tmp
if prediction >= 0.5:

yhat = 1
else:

yhat = 0
print("yhat = " yhat " label= " [500 0])

1
2
3
4
5

1
2
3

1
2
3
4
5
6
7
8
9

10
11
12
13

In [43]: import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
You do not need to modify anything in this cell

m, n = X.shape

fig, axes = plt.subplots(8,8, figsize=(8,8))
fig.tight_layout(pad=0.1,rect=[0, 0.03, 1, 0.92]) #[left, bottom, right, top]

for i,ax in enumerate(axes.flat):
Select random indices
random_index = np.random.randint(m)

Select rows corresponding to the random indices and
reshape the image
X_random_reshaped = X[random_index].reshape((20,20)).T

Display the image
ax.imshow(X_random_reshaped, cmap='gray')

Predict using the Neural Network implemented in Numpy
my_prediction = my_sequential(X[random_index], W1_tmp, b1_tmp, W2_tmp
my_yhat = int(my_prediction >= 0.5)

Predict using the Neural Network implemented in Tensorflow
tf_prediction = model.predict(X[random_index].reshape(1,400))
tf_yhat = int(tf_prediction >= 0.5)

Display the label above the image
ax.set_title(f"{y[random_index,0]},{tf_yhat},{my_yhat}")
ax.set_axis_off()

fig.suptitle("Label, yhat Tensorflow, yhat Numpy", fontsize=16)
plt show()

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

2.6 Vectorized NumPy Model Implementation (Optional)

The optional lectures described vector and matrix operations that can be used to speed the

calculations. Below describes a layer operation that computes the output for all units in a

layer on a given input example:

We can demonstrate this using the examples X and the W1 , b1 parameters above. We

use np.matmul to perform the matrix multiply. Note, the dimensions of x and W must be

compatible as shown in the diagram above.

http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Assignment.ipynb#2.6-Vectorized-NumPy-Model-Implementation-(Optional)
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Assignment.ipynb#2.6-Vectorized-NumPy-Model-Implementation-(Optional)

In [44]:

You can take this a step further and compute all the units for all examples in one Matrix-

Matrix operation.

The full operation is . This will utilize NumPy broadcasting to expand to

rows. If this is unfamiliar, a short tutorial is provided at the end of the notebook.

� = �� + � � �

Exercise 3

Below, compose a new my_dense_v subroutine that performs the layer calculations for a

matrix of examples. This will utilize np.matmul() .

Note: This function is not graded because it is discussed in the optional lectures on

vectorization. If you didn't go through them, feel free to click the hints below the expected

code to see the code. You can also submit the notebook even with a blank answer here.

In [45]:

(1, 25)

x = X[0].reshape(-1,1) # column vector (400,1)
z1 = np.matmul(x.T,W1) + b1 # (1,400)(400,25) = (1,25)
a1 = sigmoid(z1)
print(a1 shape)

UNQ_C3
UNGRADED FUNCTION: my_dense_v

def my_dense_v(A_in, W, b, g):
"""

 Computes dense layer
 Args:
 A_in (ndarray (m,n)) : Data, m examples, n features each
 W (ndarray (n,j)) : Weight matrix, n features per unit, j units
 b (ndarray (1,j)) : bias vector, j units
 g activation function (e.g. sigmoid, relu..)
 Returns
 A_out (tf.Tensor or ndarray (m,j)) : m examples, j units
 """
START CODE HERE ###

END CODE HERE ###
return(A_out)

1
2
3
4

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Assignment.ipynb#Exercise-3
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Assignment.ipynb#Exercise-3

In [46]:

Expected Output

[[0.54735762 0.57932425 0.61063923]

 [0.57199613 0.61301418 0.65248946]

 [0.5962827 0.64565631 0.6921095]

 [0.62010643 0.67699586 0.72908792]]

Click for hints

In []:

The following cell builds a three-layer neural network utilizing the my_dense_v subroutine

above.

In [47]:

We can again copy trained weights and biases from Tensorflow.

In [48]:

--
-
NameError Traceback (most recent call las
t)
<ipython-input-46-dabeea292556> in <module>
 2 W_tst = 0.1*np.arange(1,7,1).reshape(2,3) # (2 input features, 3 o
utput features)
 3 b_tst = 0.1*np.arange(1,4,1).reshape(1,3) # (1,3 features)
----> 4 A_tst = my_dense_v(X_tst, W_tst, b_tst, sigmoid)
 5 print(A_tst)

<ipython-input-45-90ca24a90566> in my_dense_v(A_in, W, b, g)
 14 """
 15 ### START CODE HERE ###
---> 16 for i in range(units):
 17 w = W[:,i]
 18 z=np.dot(w,a_in) + b[i]

NameError: name 'units' is not defined

X_tst = 0.1*np.arange(1,9,1).reshape(4,2) # (4 examples, 2 features)
W_tst = 0.1*np.arange(1,7,1).reshape(2,3) # (2 input features, 3 output features)
b_tst = 0.1*np.arange(1,4,1).reshape(1,3) # (1,3 features)
A_tst = my_dense_v(X_tst, W_tst, b_tst, sigmoid)
print(A_tst)

UNIT TESTS

test_c3(my_dense_v)

def my_sequential_v(X, W1, b1, W2, b2, W3, b3):
A1 = my_dense_v(X, W1, b1, sigmoid)
A2 = my_dense_v(A1, W2, b2, sigmoid)
A3 = my_dense_v(A2, W3, b3, sigmoid)
return(A3)

W1_tmp,b1_tmp = layer1.get_weights()
W2_tmp,b2_tmp = layer2.get_weights()
W3_tmp b3_tmp layer3 get_weights()

1
2
3
4
5

1
2
3

1
2
3
4
5

1
2
3

Let's make a prediction with the new model. This will make a prediction on all of the

examples at once. Note the shape of the output.

In [49]:

We'll apply a threshold of 0.5 as before, but to all predictions at once.

In []:

Run the following cell to see predictions. This will use the predictions we just calculated

above. This takes a moment to run.

--
-
NameError Traceback (most recent call las
t)
<ipython-input-49-1590e538921d> in <module>
----> 1 Prediction = my_sequential_v(X, W1_tmp, b1_tmp, W2_tmp, b2_tmp, W3
_tmp, b3_tmp)
 2 Prediction.shape

<ipython-input-47-ca76a4e58ea4> in my_sequential_v(X, W1, b1, W2, b2, W3,
b3)
 1 def my_sequential_v(X, W1, b1, W2, b2, W3, b3):
----> 2 A1 = my_dense_v(X, W1, b1, sigmoid)
 3 A2 = my_dense_v(A1, W2, b2, sigmoid)
 4 A3 = my_dense_v(A2, W3, b3, sigmoid)
 5 return(A3)

<ipython-input-45-90ca24a90566> in my_dense_v(A_in, W, b, g)
 14 """
 15 ### START CODE HERE ###
---> 16 for i in range(units):
 17 w = W[:,i]
 18 z=np.dot(w,a_in) + b[i]

NameError: name 'units' is not defined

Prediction = my_sequential_v(X, W1_tmp, b1_tmp, W2_tmp, b2_tmp, W3_tmp,
Prediction shape

Yhat = (Prediction >= 0.5).astype(int)
print("predict a zero: " Yhat[0], "predict a one: " Yhat[500])

1
2

1
2

In []:

You can see how one of the misclassified images looks.

In []:

2.7 Congratulations!

You have successfully built and utilized a neural network.

2.8 NumPy Broadcasting Tutorial (Optional)

In the last example, utilized NumPy broadcasting to expand the vector . If

you are not familiar with NumPy Broadcasting, this short tutorial is provided.

 is a matrix-matrix operation with dimensions which results in a matrix

with dimension . To that, we add a vector with dimension . must be

expanded to be a matrix for this element-wise operation to make sense. This

expansion is accomplished for you by NumPy broadcasting.

� = �� + � �

�� (�,)(,)�1 �1 �2
(�,)�2 � (1,)�2 �
(�,)�2

Broadcasting applies to element-wise operations.

Its basic operation is to 'stretch' a smaller dimension by replicating elements to match a

import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
You do not need to modify anything in this cell

m, n = X.shape

fig, axes = plt.subplots(8, 8, figsize=(8, 8))
fig.tight_layout(pad=0.1, rect=[0, 0.03, 1, 0.92]) #[left, bottom, right, top]

for i, ax in enumerate(axes.flat):
Select random indices
random_index = np.random.randint(m)

Select rows corresponding to the random indices and
reshape the image
X_random_reshaped = X[random_index].reshape((20, 20)).T

Display the image
ax.imshow(X_random_reshaped, cmap='gray')

Display the label above the image
ax.set_title(f"{y[random_index,0]}, {Yhat[random_index, 0]}")
ax.set_axis_off()

fig.suptitle("Label, Yhat", fontsize=16)
plt show()

fig = plt.figure(figsize=(1, 1))
errors = np.where(y != Yhat)
random_index = errors[0][0]
X_random_reshaped = X[random_index].reshape((20, 20)).T
plt.imshow(X_random_reshaped, cmap='gray')
plt.title(f"{y[random_index,0]}, {Yhat[random_index, 0]}")
plt.axis('off')
plt show()

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

1
2
3
4
5
6
7
8

http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Assignment.ipynb#2.7-Congratulations!
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Assignment.ipynb#2.7-Congratulations!
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Assignment.ipynb#2.8-NumPy-Broadcasting-Tutorial-(Optional)
http://localhost:8891/notebooks/Desktop/eLerning%20Topics/AI%20Stanford/Jupyter%20Notebooks/S2/Files/home/jovyan/work/C2_W1_Assignment.ipynb#2.8-NumPy-Broadcasting-Tutorial-(Optional)

larger dimension.

More specifically (https://NumPy.org/doc/stable/user/basics.broadcasting.html): When

operating on two arrays, NumPy compares their shapes element-wise. It starts with the

trailing (i.e. rightmost) dimensions and works its way left. Two dimensions are compatible

when

• they are equal, or

• one of them is 1

If these conditions are not met, a ValueError: operands could not be broadcast together

exception is thrown, indicating that the arrays have incompatible shapes. The size of the

resulting array is the size that is not 1 along each axis of the inputs.

Here are some examples:

missing

Calculating Broadcast Result shape

The graphic below describes expanding dimensions. Note the red text below:

missing

Broadcast notionally expands arguments to match for element wise operations

The graphic above shows NumPy expanding the arguments to match before the final

operation. Note that this is a notional description. The actual mechanics of NumPy operation

choose the most efficient implementation.

For each of the following examples, try to guess the size of the result before running the

example.

In []:

Note that this applies to all element-wise operations:

In []:

missing

Row-Column Element-Wise Operations

In []:

This is the scenario in the dense layer you built above. Adding a 1-D vector to a (m,j)

matrix.

missing

Matrix + 1-D Vector

�

a = np.array([1,2,3]).reshape(-1,1) #(3,1)
b = 5
print(f"(a + b).shape: {(a + b).shape}, \na + b = \n{a + b}")

a = np.array([1,2,3]).reshape(-1,1) #(3,1)
b = 5
print(f"(a * b).shape: {(* b).shape}, \na * b = \n{ * b}")

a = np.array([1,2,3,4]).reshape(-1,1)
b = np.array([1,2,3]).reshape(1,-1)
print(a)
print(b)
print(f"(a + b).shape: {(b).shape}, \na + b = \n{ b}")

1
2
3

1
2
3

1
2
3
4
5

https://numpy.org/doc/stable/user/basics.broadcasting.html
https://numpy.org/doc/stable/user/basics.broadcasting.html
https://numpy.org/doc/stable/user/basics.broadcasting.html
https://numpy.org/doc/stable/user/basics.broadcasting.html
https://numpy.org/doc/stable/user/basics.broadcasting.html
https://numpy.org/doc/stable/user/basics.broadcasting.html

Please click here if you want to experiment with any of the non-graded code.

