
GCP Data Engineer 1
v20180116

1. Exam overview
The exam consists of 50 questions that must be
answered in 2 hours.

The content including:

• Storage (20% of questions),

• Big Data Processing (35%),

• Machine Learning (18%),

• case studies (15%) and

• others (Hadoop and security about 12%).

All the questions are scenario simulations where
you have to choose which option would be the
best way to deal with the situation.

2. Big Data Ecosystem 2

particularly focusing on Apache Pig, Hive, Spark,
and Beam

- Hadoop

- open source MapReduce framework

- the underlying technology for Dataproc

- HDFS

- Hadoop File System

- Pig

- scripting language that compiles into

MapReduce jobs

- Procedural Data Flow Language:

PigLatin

- Less development effort & code
efficiency

- does not have any notion for partitions
- supports Avro whereas Hive does not

- Hive

- data warehousing system and query

language

- SQL-like

- Spark

- fast, interactive, general-purpose

framework for SQL, streaming, machine
learning, etc.

- solves similar problems as Hadoop
MapReduce but with a fast in-memory
approach.

- Sqoop

- transfer data between Hadoop and

structured datastores (relational)

- Sqoop imports data from a relational

database system or a mainframe into
HDFS.

- Running Sqoop on a Dataproc Hadoop
cluster gives you access to the built-in
Google Cloud Storage connector

- The two previous points mean you can
use Sqoop to import data directly into
Cloud Storage

- Oozie

- workflow scheduler system to manage

Apache Hadoop jobs

- Oozie Workflow jobs are Directed

Acyclical Graphs (DAGs) of actions.

- Cassandra

- Wide-column store based on ideas of
BigTable and DynamoDB(Datastore)

- Wide column store

- solution for problems where one of your

requirements is to have a very heavy

write system and you want to have a
quite responsive reporting system on top
of that stored data.

- does not provide ACID and relational
data properties

- an available, partition-tolerant system
that supports eventual consistency

- MongoDB

- is fit for use cases where your system

demands a schema-less document
store.

- HBase

- might be fit for search engines, analyzing

log data, or any place where scanning
huge, two-dimensional join-less tables is
a requirement.

- Redis

- is built to provide In-Memory search for

varieties of data structures like trees,
queues, linked lists, etc and can be a
good fit for making real-time
leaderboards, pub-sub kind of system.

- MYSQL
- You can easily add nodes to MySql

Cluster Data Nodes and build cube to do
OLAP. (answer for a mock question)

3. Storage
Cloud Storage/Cloud SQL/DataStore/BigTable/
BigQuery.

� by Guang.Xu@servian.com, modified based on ‘James' GCP Dotpoints’ with various online sources which are acknowledged at the end, please share under 1
the Creative Commons Attribution 3.0 Australia License. Let me know if there is any mistake.

 refer to https://hadoopecosystemtable.github.io2

mailto:Guang.Xu@servian.com
https://creativecommons.org/licenses/by/3.0/au/

3.1.Cloud Storage (GCS)
- Blob storage. Upload any bytes to a location.

The content isn’t indexed at all just stored.
(Amazon S3)

- Virtually unlimited storage

- Nearline and Coldline: for ~1 sec lookup for

access, charged for volume of data accessed
- Nearline for once per month

- Coldline for once per year

- buckets to segregate storage items

- geographical separation:

- persistant, durable, replicated

- spread data across zones to minimise

impact of service disruptions

- spread data across regions to provide

global access to data

- Ideal for storing but not for high volume of

read/write (e.g. sensor data)

- A way to store the data that can be commonly

used by Dataproc and BigQuery

Encryption:

- Google Cloud Platform encrypts customer data

stored at rest by default

- Encryption Options:

- Server-side encryption:

- Customer-supplied encryption

keys: You can create and manage
your own encryption keys for
server-side encryption

- Customer-managed encryption
keys: You can generate and
manage your encryption keys
using Cloud Key Management
Service.

- Client-side encryption: encryption that
occurs before data is sent to Cloud
Storage.

3.2.Cloud SQL & Spanner
- Managed/No ops relational database (MySQL

and PostgreSQL) like Amazon RDS.

- best for gigabytes of data with transactional

nature

- Low latency

- Doesn’t scale well beyond GB’s
- data structures and underlying

infrastructure is required.

- Spanner is a distributed and scalable

solution for RDBMS however also more
expensive.

- Management:

- Managed backups & automatic

replication

- fast connection with GCE/GAE

- uses Google security

- Flexible pricing, pay for when you use it

3.3.BigTable
Feature:

- Stored on Google’s internal store Colossus

- no transactional support (so can handle

petabytes of data)

- not relational (No SQL or joins), ACID only at

row level.

- Avoid schema designs that require

atomicity across rows

- high throughput: Throughput has linear

growth with node count if correctly balanced.

- work with it using Hbase API

- no-ops, auto-balanced, replicated,

compacted,

Query:

- Single key lookup. No property search.

- Stored lexicographically in big endian format

so keys can be anything.

- quick range lookup

Performance:

- Fast to petabyte scale, not a good solution for

storing less than 1 TB of data.

- Low-latency read/write access

- High-throughput analytics

- Native time series support

- for large analytical and operational workloads

- designed for sparse tables

Key Design:

- Design your keys how you intend to query.

- If your most common query is the most recent

data, use a reverse date stamp at the end of
the key.

- Ensure your keys are evenly distributed to
void hot spotting. This is why date stamps as
a key or starting a key is bad practise as all of
the most recent data is being written at the
same time.

- For historical data analytic, hotspot
issue may not a biggest concern.

- For time-series data, use tall/narrow tables.
Denormalize- prefer multiple tall and narrow
tables

- avoid hotspotting
- Field promotion (preferred): Move fields

from the column data into the row key to
make writes non- contiguous.

- Salting: (only where field promotion does
not resolve) Add an additional calculated
element to the row key to artificially
make writes non- contiguous.

Performance Test
- learns about your access patterns and will

adjust the metadata stored in nodes in order to
try balance your workloads.

- This takes minutes to hours and requires to use
at least 300GB of data

- use a production instance

- Stay below the recommended storage

utilization per node.

https://cloud.google.com/storage/docs/encryption/customer-supplied-keys
https://cloud.google.com/storage/docs/encryption/customer-supplied-keys
https://cloud.google.com/storage/docs/encryption/customer-managed-keys
https://cloud.google.com/storage/docs/encryption/customer-managed-keys
https://cloud.google.com/storage/docs/encryption/client-side-keys

- Before you test, run a heavy pre-test for
several minutes

- Run your test for at least 10 minutes

Data update
- When querying BigTable selects the most

recent value that matches the key.

- This means that when deleting/updating

we actually write a new row with the
desired data and compaction can
remove the deleted row later. This means
that deleting data will temporarily
increase the disk usage

- append only (cannot update a single field like
in CSQL/CDS)

- tables should be tall and narrow (store
changes by appending new rows- tall, collapse
flags into a single column - narrow)

Group columns
- Group columns of data you are likely to query

together (for example address fields, first/last
name and contact details).

- use short column names, organise into
column families (groups e.g. MD:symbol,
MD:price)

Periodically compacts
• BigTable periodically compacts the data for

you. This means reorganising and removing
deleted records once they’re no longer needed.

Sorted String Tables
- BigTable relies on Sorted String Tables to

organise the data.
- are immutable pre sorted key,value pairs of

strings or protobufs.

Architecture

!

Size limits
- A single row key: 4 KB (soft limit?)

- A single value in a table cell: 100 MB

- All values in a single row: 256 MB

Access Control
- you can configure access control at the

project level and the instance level(lowest IAM
resources control)

- A Cloud Bigtable instance is mostly just
a container for your clusters and nodes,
which do all of the real work.

- Tables belong to instances, not to
clusters or nodes. So if you have an
instance with up to 2 clusters, you can't
assign tables to individual clusters 

Production & Development
- Production: A standard instance with either 1

or 2 clusters, as well as 3 or more nodes in
each cluster.

- use replication to provide high
availability

- Development: A low-cost instance for
development and testing, with performance
limited to the equivalent of a 1-node cluster.

- It is recommended to create your Compute
Engine instance in the same zone as your
Cloud Bigtable instance for the best possible

performance (when use Cloud Bigtable with a
Compute Engine-based application)

TOOLS
- cbt is a tool for doing basic interactions with

Cloud Bigtable.

- HBase shell is a command-line tool that

performs administrative tasks, such as creating
and deleting tables.

- you can update any of the following settings
without any downtime:

- number of clusters / replication settings

- upgrade a development instance to a

production (permanent)

- Impossible to Switching between SSD and

HDD

- export the data from the existing

instance and import the data into a new
instance.

- OR write a Cloud Dataflow or Hadoop
MapReduce job that copies the data
from one instance to another.

3.4.Datastore
- Built on top of BigTable.

- non-consistent for every row

- document DB for non-relational data

- Suitable:

- Atomic transactions: can execute a set

of operations where either all succeed, or
none occur.

- Supports ACID transactions, SQL-like
queries.

-
- for structured data.

- for hierarchical document storage such

as HTML

- Query

- can search by keys or properties (if
indexed)

- Key lookups somewhat like Amazon
DynamoDB

- Allows for SQL-like querying down to
property level

- does not support complex joins with
multiple inequality filters

- Performance:

- Fast to Terabyte scale, Low latency

- Quick read, slow write as it relies on

indexing every property (by default) and
must update indexes as updates/writes
occur

Errors and Error Handling
- UNAVAILABLE, DEADLINE_EXCEEDED

- Retry using exponential backoff.

- INTERNAL

- Do not retry this request more than
once.

- Other

- Do not retry without fixing the problem

3.5.BigQuery

Feature
- Fully managed data warehouse

- Has connectors for BigTable, GCS, Google
Drive and can import from Datastore backups,
CSV, JSON and ARVO

- for analytics. serverless.
- alternative to Hadoop with Hive

Performance
- Petabyte scale

- High latency used more for analytics than for

low latency rapid lookups like a RDBMS like
CloudSQL or Spanner

Query
- Standard SQL (preferred) or Legacy SQL (old)

- Cannot use both Legacy and SQL2011 in the

same query

- Table partitioning

- Distributed writing to file for output. Eg:

`file-0001-of-0002`

- user defined functions in JS (UDFJS)

- Query jobs are actions executed

asynchronously to load, export, query, or copy
data.

- If you use the LIMIT clause, BigQuery will still
process the entire table.

- Avoid SELECT * (full scan), select only
columns needed (SELECT * EXCEPT)

- benefits of using denormalized data
- Increases query speed

- makes queries simpler

- BUT: Normalize is the way make dataset

better organized but less performance
optimized

types of queries:

- Interactive: query is executed immediately,

counts toward daily/concurrent usage (default)

- Batch: batches of queries are queued and the

query starts when idle resources are available,
only counts for daily and switches to
interactive if idle for 24 hours

Data Import

- batch (free)

- web console (local files), GCS, GDS

- stream (costly)

- data with CDF, Cloud logging or POST
calls

- Raw files:
- federated data source, CSV/JSON/Avro

on GCS, Google sheets

- Google Drive

- Loading data into BigQuery from Google
Drive is not currently supported,

- but can query data in Google Drive using
an external table.

- By default, the BigQuery service expects all
source data to be UTF-8 encoded

- JSON files must always be encoded in
UTF-8

- to support (occasionally) schema changing
you can use 'Automatically detect' for
schema changes. Automatically detect is not
default selected

- You cannot use the Web UI to:

- Upload a file greater than 10 MB in size

- Upload multiple files at the same time

- Upload a file in SQL format

Partitions
- which improves query performance and

reduces costs

- You cannot change an existing table into a

partitioned table. You must create a
partitioned table from scratch.

- Two types of partitioned tables:

- Ingestion Time: Tables partitioned

based on the data’s ingestion (load) date
or arrival date. Each partitioned table will
have pseudocolumn_PARTITIONTIME, or
time data was loaded into table.
Pseudocolumns are reserved for the
table and cannot be used by the user.

- Partitioned Tables: Tables that are
partitioned based on a TIMESTAMP or
DATE column.

RDBMS/CloudSQL/
Spanner

Datastore

Row Entity

Tables Kind

Fields Property

Column values must
be consistent

Properties can vary
between entities

Structured relational
data

Structured
hierarchical data
(html, xml)

- Wildcard tables

- Used if you want to union all similar

tables with similar names. ’*’ (e.g.
project.dataset.Table*)

- Partitioned tables include a pseudo column
named _PARTITIONTIME that contains a date-
based timestamp for data loaded into the table

- It can be used to query specific
partitions in the WHERE clause

Windowing:

- window functions increase the efficiency and

reduce the complexity of queries that analyze
partitions (windows) of a dataset by providing
complex operations without the need for many
intermediate calculations.

- They reduce the need for intermediate tables to
store temporary data

Bucketing
- Like partitioning, but each split/partition should

be the same size and is based on the hash
function of a column. Each bucket is a
separate file, which makes for more efficient
sampling and joining data.

legacy vs. standard SQL 3

- `project.dataset.tablename*`

- It is set each time you run a query

- default query language is

- Legacy SQL for classic UI

- Standard SQL for Beta UI

Anti-patterns

- Avoid self-joins

- Partition/Skew: avoid unequally sized

partitions, or when a value occurs more often
than any other value -

- Cross-Join: avoid joins that generate more
outputs than inputs

- Update/Insert Single Row/Column: avoid point-
specific DML, instead batch updates and
inserts

- anti-patterns and schema design: https://
cloud.google.com/bigtable/docs/schema-
design

Access Control
- Security can be applied at the project and

dataset level, but not table or view level

- three types of resources in BigQuery are

organizations, projects, and datasets

- Authorized views allow you to share query

results with particular users/groups without
giving them access to underlying data

- Can be used to restrict access to
particular columns or rows

- Create a separate dataset to store the
view

Billing
- based on storage (amount of data stored),

querying (amount of data/number of bytes
processed by query), and streaming inserts

- Storage options are active and long-term
(modified or not past 90 days).

- Query options are on-demand and flat-rate.

Table types:
• Native tables: tables backed by native

BigQuery storage.

• External tables: tables backed by storage

external to BigQuery(also known as a
federated data source). For more
information, see Querying External Data
Sources.

• Views: Virtual tables defined by a SQL
query. For more information, see Using
views.

Caching:

- There is no charge for a query that retrieves its

results from cache.

- BigQuery caches query results for 24 hours.

- By default, a query's results are cached unless:

- When a destination table is specified

- If any of the referenced tables or logical

views have changed since the results
were previously cached

- When any of the tables referenced by the
query have recently received streaming
inserts (a streaming buffer is attached to
the table) even if no new rows have
arrived

- If the query uses non-deterministic
functions such as
CURRENT_TIMESTAMP() and NOW(),
CURRENT_USER()

- If you are querying multiple tables using
a wildcard

- If the query runs against an external data
source

Export:

- Data can only be exported in JSON / CSV /

Avro

- The only compression option available is GZIP.

- GZIP compression is not supported for
Avro exports.

- To export more than 1 GB of data, you need to
put a wildcard in the destination filename. (up
to 1 GB of table data to a single file)

More refer to: https://cloud.google.com/
bigquery/docs/

https://github.com/jorwalk/data-engineering-
gcp/blob/master/know/bigquery.md

 https://cloud.google.com/bigquery/docs/reference/standard-sql/migrating-from-legacy-sql3

https://cloud.google.com/bigtable/docs/schema-design
https://cloud.google.com/bigtable/docs/schema-design
https://cloud.google.com/bigtable/docs/schema-design
https://cloud.google.com/bigquery/external-data-sources
https://cloud.google.com/bigquery/external-data-sources
https://cloud.google.com/bigquery/docs/views
https://cloud.google.com/bigquery/docs/views
https://cloud.google.com/bigquery/docs/
https://cloud.google.com/bigquery/docs/
https://cloud.google.com/bigquery/docs/
https://github.com/jorwalk/data-engineering-gcp/blob/master/know/bigquery.md
https://github.com/jorwalk/data-engineering-gcp/blob/master/know/bigquery.md

4. Big Data Processing
Covering knowledge about BigQuery, Cloud
Dataflow, Cloud Dataproc, Cloud Datalab and
Cloud Pub/Sub.

4.1.App Engine
- run code on managed instances of machines

with automated scaling and deployment
- Handle sudden and extreme spikes of traffic

which require immediate scaling

4.2.GCP Compute
- VM

- Pre-emptible instances (up to 80% discount

but can be taken away)

- Allocated on-demand and only pay for the

time they are up

4.3.Dataflow
Feature
- Executes Apache Beam Pipelines(no-ops,

could use Spark, Flink)

- Can be used for batch or stream data

- scaleable, fault-tolerant, multi-step

processing of data

- Often used for data preparation/ETL for data

sets

- filter, group, transform

- Pipelines and how it works for ETL

DataSource
- The Cloud Dataflow connector for Cloud

Bigtable makes it possible to use Cloud
Bigtable in a Cloud Dataflow pipeline.

- Can read data from multiple sources and can
kick off multiple cloud functions in parallel
writing to multiple sinks in a distributed fashion

(eg Bigtable for low latency use and bigquery
for data exploration).

Windowing
- Can apply windowing to streams for rolling

average for the window, max in a window etc.

- window types

- Fixed Time Windows

- Sliding Time Windows (overlapped)

- Session Windows

- Single Global Window

- Default windowing behavior is to assign all
elements of a PCollection to a single, global
window, even for unbounded PCollections

Triggers
- IT determines when a Window's contents

should be output based on certain criteria
being met

- Allows specifying a trigger to control
when (in processing time) results for the
given window can be produced.

- If unspecified, the default behavior is to
trigger first when the watermark passes
the end of the window, and then trigger
again every time there is late arriving
data.

- Time-Based Triggers
- Event time triggers. These triggers

operate on the event time, as indicated
by the timestamp on each data element.
Beam’s default trigger is event time-
based.

- Processing time triggers. These
triggers operate on the processing time –
the time when the data element is
processed at any given stage in the
pipeline.

- Data-driven triggers. These triggers operate
by examining the data as it arrives in each
window, and firing when that data meets a
certain property.

- Currently, data-driven triggers only
support firing after a certain number of
data elements.

- Composite triggers. These triggers combine
multiple triggers in various ways.

Tech:
- PCollections: abstraction that represents a

potentially distributed, multi-element data set,
that acts as the pipeline’s data

- A transform is a data processing operation, or
a step, in your pipeline. A transform takes one
or more PCollections as input, performs a
processing function that you provide on the
elements of that PCollection, and produces an
output PCollection.

- DirectPipelineRunner allows you to execute
operations in the pipeline directly & locally

- Create a cron job with Google App Engine
Cron Service to run the Cloud Dataflow job

IAM
- dataflow.developer role enable the developer

interacting with the Cloud Dataflow job , with
data privacy.

- dataflow.worker role provides the permissions
necessary for a Compute Engine service
account to execute work units for a Dataflow
pipeline

Pipeline Update
- With Update, to replace an existing pipeline in-

place with the new one and preserve
Dataflow's exactly-once processing guarantee

- When update pipeline manually, use DRAIN
instead of CANCEL to maintain in-flight data.

- The Drain command is supported for
streaming pipelines only.

- pipelines cannot share data or transforms

Key things to focus on are:
- Event vs. Processing time

- Configuring ETL pipelines

How to integrate with BigQuery

constraints you might have.

why you would use JSON or Java related to
Pipelines.

4.4.Cloud Pub/Sub
Feature
- server-less messaging

- decouples producers and consumers of data

in large organisations / complex systems

- the glue that connects all the components.

- order not guaranteed

�

Asynchronous processing
- availability (buffer during outages)
- change management
- throughput (balance load among workers)
- unification (cross-organisational)
- latency (accept requests at edge of network)
- consistency

basic concepts
- topics
- subscriptions

- push and pull
- pull is a more efficiency message deliver/

consume mechanism

Message Flow
- Publisher creates a topic in the Cloud Pub/

Sub service and sends messages to the topic.

- Messages are persisted in a message store

until they are delivered and acknowledged by
subscribers.

- The Pub/Sub service forwards messages from
a topic to all of its subscriptions, individually.
Each subscription receives messages either by
pushing/pulling.

- The subscriber receives pending messages
from its subscription and acknowledges
message.

- When a message is acknowledged by the
subscriber, it is removed from the
subscription’s message queue.

Deduplicate
- Maintain a database table to store the hash

value and other metadata for each data entry.

- Cloud Pub/Sub assigns a unique `message_id`

to each message, which can be used to detect
duplicate messages received by the
subscriber.

- Lots duplicate messages may happen when:
endpoint is not acknowledging messages
within the acknowledgement deadline

4.5.Dataproc
Feature
- Dataproc is managed (No Ops) Hadoop cluster

on GCP (i.e. managed Hadoop, Pig, Hive,
Spark programs)

- automated cluster management. resizing

- Code/Query only

- Job management screen in the console.

- think in terms of a ‘job-specific resource’, for

each job, create a cluster then delete it

- Used if migrating existing on-premise
Hadoop or Spark infrastructure to Google
Cloud Platform without redevelopment effort.

Storage

- Can store data on disk (HDFS) or can use GCS

- GCS allows for the use of preemptible

machines that can reduce costs significantly

- - store in HDFS (split up on the cluster, but

requires cluster to be up) or in GCS (separate
cluster and storage)

Customize the software
- Set initialization actions

- Modify configuration files using cluster

properties

- Log into the master node and make changes

from there

- NO Cloud Deployment Manager

Tech:
- creating a new Cloud Dataproc cluster with the

projects.regions.clusters.create operation,
these four values are required: project, region,
name, and zone.

- you can access the YARN web interface by
configuring a browser to connect through a
SOCKS proxy

- You can SSH directly to the cluster nodes

- you can use a SOCKS proxy to connect your

browser through an SSH tunnel.

- YARN ResourceManager and the HDFS

NameNode interfaces are available on master
node

Billing:
- is billed by the second. All Cloud Dataproc

clusters are billed in one-second clock-time
increments, subject to a 1-minute minimum
billing

https://cloud.google.com/dataflow/model/pipelines

IAM

- Service accounts used with Cloud

Dataproc must have Dataproc/Dataproc
Worker role (or have all the permissions
granted by Dataproc Worker role).

- need permissions to read and write
to Google Cloud Storage, and to
write to Google Cloud Logging.

4.6.Dataprep
- Managed Trifacta for preparing and analysing

quality and transforming the input data
- service for visually exploring, cleaning, and

preparing data for analysis. can transform data
of any size stored in CSV, JSON, or relational-
table formats

4.7.Cloud Functions:
- NodeJS functions as a service.

- No ops, no server just code entry point and

response, autoscaled by GCP

- Can be triggered by dataflow, GCS bucket

events, Pub/Sub Messages and HTTP
Calls

5. Machine Learning 4

Covering knowledge on GCP API (Vision API,
Speech API, Natural Language API and Translate
API) and Tensorflow.

• Embeddings

• Deploying Models

• TensorFlow CheatSheet and Terminology

Understand the different ML services available:
ML Engine, ML APIs, and TensorFlow, as well as
the relevance of Cloud DataLab.

mostly ML domain (and not TensorFlow specific)
basically about training. Nothing about the Cloud
ML service

5.1.ML Terms:
- Label: The correct classification/value

- Input: Predictor Variables

- Example: Input + Label sample to train your

model

- Model: Mathematical function, Some work is

done on inputs for an output

- Training: Adjusting Variable weights in a model

to minimise error

- Prediction: Using the model to guess the label

for an input

- Supervised Learning: Training your model

using examples data to predict future data

- Unsupervised Learning: Data is analysed

without labels for patterns or clusters.

- Neuron: A way to combine inputs and

weighting them to make a decision (it is one
unit of input combination)

- Gradient Descent: The process of testing error
in order to minimise its value iteratively
decreases towards a minimum. (This can be
global or local maximum and starting points
and learning rates are important to ensure the
process doesn’t stop at local minima. Too low
a learning rate and your model will tgrain
slowly, too high and it may miss the minimum)

- Hidden Layer: A set of neurons that act on the
same input data.

- Features: The data values/fields you choose to
model, these can be transformed (x^2, y^2,
etc)

- Feature Engineering: The process of building a
set of feature combinations to act on inputs.

- Precision: The positive predictive value how
many times it correctly predicted a thing as its
classification (eg cat)

- Recall: The true positive rate, How many times
a think IS in the class (the actual number of
cats)

- 	 Only recognised 1/10 cats, but was right.
100% precision, 10% recall

Recommendation Engine
- cluster similar users: User A and User B both

rate House Z as a 4

- cluster similar items (products, houses, etc):

Most users rate House Y as a 2

- combine these two to product a rating

5.1.ML Basics
- There are two main stages of ML, Training and

Inference. Inference is often predictive in nature

- Common models tend to include regression

(what value?) and classification (what
category?)

- Converting inputs to vectors for analysis a well
documented problem that can actually be
improved with the use of ML itself.Some public
models already exist incluing https://
en.wikipedia.org/wiki/Word2vec

- Initial weight selection is hard to get right,
human intuition can often help with this starting
point for gradient descent

- Weights are iteractively tweaked. Initial weights
-> Calculate Erorr -> adjust weight ->

 This part is not well organised yet4

https://www.tensorflow.org/programmers_guide/embedding
https://cloud.google.com/ml-engine/docs/deploying-models
https://medium.com/google-cloud/a-tensorflow-glossary-cheat-sheet-382583b22932
https://en.wikipedia.org/wiki/Word2vec
https://en.wikipedia.org/wiki/Word2vec
https://en.wikipedia.org/wiki/Word2vec

recalculate error -> repeat until error is
minimised.

- In Image ML each pixel is represented by a
number, to vectorising images is actually much
easier than text where you have to recognise
that Man is to Woman as Boy is to Girl so they
need to have similar magnitude differences.

Neural Network
- Goal is to minimize cost

- Cost depends on problem - usually the sum of

square errors for regression problems or
Cross_entropy on classification problems

- Feature Engineering less needed than linear
models, but still useful

- Understand how to reduce noise

Wide & Deep Learning model
- The wide model is used for memorization,

while the deep model is used for
generalization

- Use for recommender system, search, and
ranking problems.

Online training and/or continue learning
- build pipeline to continue train you model

based on both new and old data,

Effective ML:
- Data Collection

- Data Organisation

- Model Creation using human insight and

domain knowledge

- Use machines to flesh out the model from the

input data

- Your Dataset should cover all cases both

positive and negative and should have at least
5 cases of each otherwise the model cannot
correctly classify that case. Near misses are
also important for this, Explore your data, find
causes of problems and try fix the issue. If it

can’t be fixed try find more `bad` cases to try
train your model for it, Otherwise remove these
from the data set.

- Overfitting and how to correct

- Neural network basics (nodes / layers)

- Use the Tensorflow playground to understand

neural networks

Machine Learning on GCP

- Tensorflow - for ML researcher, use SDK

- CloudML - for Data Scientist, use custom

model, scaleable, no-ops (where have enough
data to train a model)

- ML APIs - for App Developer, use pre-built
models, e.g. vision, speech, language (where
would need more data to train a model)

5.3.ML Engine

- Train and predict ML models

- Can use multiple ML platforms such as

TensorFlow , scikit-learn and XGBoost

Training cluster:
- The training service allocates the resources for

the machine types you specify

- Replica: Your running job on a given node is

called a replica.

- each replica in the training cluster is

given a single role or task in distributed
training:

- master: Exactly one replica is designated the
master.

- This task manages the others and
reports status for the job as a whole.

- If you are running a single-process job,
the sole replica is the master for the job.

- workers: One or more replicas may be
designated as workers. These replicas do their

portion of the work as you designate in your
job configuration.

- parameter servers: One or more replicas may
be designated as parameter servers. These
replicas coordinate shared model state
between the workers.

- CUSTOM tier for Cloud Machine Learning
Engine allows you to specify the number of
Workers and parameter servers

Online versus Batch Prediction
- Online

- Optimized to minimize the latency of
serving predictions.

- Predictions returned in the response
message.

- Returns as soon as possible.

- Batch

- Optimized to handle a high volume of
instances in a job and to run more
complex models.

- Predictions written to output files in a
Cloud Storage location that you
specify.

- Asynchronous request.

Exception
- The training service runs until your job

succeeds or encounters an unrecoverable
error.

- In the distributed case, it is the status of the
master replica that signals the overall job
status.

- run a Cloud ML Engine training job locally
(gcloud ml-engine local train) is especially
useful in the case of testing distributed models

5.4.TensorFlow

● OS Machine learning/Deep Learning
platform

● Lazy evaluate during build, full

https://en.wikipedia.org/wiki/Cross_entropy

evaluate during execution

Tensorflow

- Machine learning library

- - Underpins many of Google’s products

- - C++ engine and API (so can run on GPUs)

- - Python API (so can easily write code)

- To use Tensorflow:

- - Collect predictors and target data

- - discard info that identifies a row (need at

least 5-10 examples of a particular value - to
avoid overfitting)

- - predictor columns must be numerical (not
categorial / codes)

- - Create model

- - how many nodes and layers do we need?

- - Train the model based on input data

- - Regression model predicts a number

- - Classification model predicts a category

- Use the model on new data

Feature Engineering
- a sparse vector

- very long, with many zeros, contains only
a single 1

- If you don't know the set of possible values in
advance, you can use
categorical_column_with_hash_bucket instead.

- An embedding is a mapping from discrete
objects, such as words, to vectors of real
numbers.

5.5.Datalab
- Datalab: Managed Jupyter notebooks great

for use with a dataproc cluster to write pyspark
jobs

- How to run Datalab

- - open source notebook built on Jupyter

- - use existing Python packages

- - also can insert SQL & JS for BigQuery, HTML
for web content, charts, tables

- - analyse data in BQ, GCE, GCS

- - free, just pay for resources

- Three ways to run Datalab:

- - locally (good, if only one person using)

- - Docker on GCE (better, use by multiple

people through SSH;CloudShell, uses
resources on GCE)

- Docker + Gateway (best, uses a gateway and
proxy, runs locally)

- a powerful interactive tool created to explore,
analyze, transform and visualize data and build
machine learning models on Google cloud
platform.

6. Management

6.1.IAM & Billing
- 3 Member types, Service account, google

account and google group.

- Service Accounts are for non human

users such as applications

- Google Accounts are for single users

- Google groups are for multi users

- Project transfer fees are associated with the
instigator.

- Billing access can be provided to a project or
set of projects without granting access to the
content. This is useful for separation of duties
between finance/devs etc.

- How billing works across projects

6.2.Stackdriver
- For store, search, analyse, monitor, and alert

on log data and events.

- Be sure to know the sub-products of

Stackdriver (Debugger, Error Reporting,
Alerting, Trace, Logging), what they do and
when they should be used.

- Hybrid monitoring service.

- how you can debug, monitor and log using

Stackdriver.

- how to use Stackdriver to help debug source

code

- Audit Logs to review data access (e.g.

BigQuery)

- Stackdriver Monitoring

- can see the usage of BigQuery query
slots.

- Stackdriver Trace
- is a distributed tracing system for

Google Cloud Platform that collects
latency data from Google App Engine,
Google HTTP(S) load balancers, and
applications instrumented with the
Stackdriver Trace SDKs, and displays it
in near real time in the Google Cloud
Platform Console

6.3.Data Studio 360
- Data Dashboard

- can use the existing YouTube data
source

- The prefetch cache is only active for data
sources that use owner's credentials to
access the underlying data.

- Disabling the query cache could result in
higher data usage costs for paid data
sources, such as BigQuery

- you can turn the prefetch cache off for a
given report. You might want to do this if:

- your data changes frequently and you
want to prioritize freshness over
performance.

- you are using a data source that incurs
usage costs (e.g., BigQuery) and want to
minimize those costs.

6.4.Cloudshell
- temporary VM
- recycled every 60 minutes (approx.)

6.5.Cloud Deployment Manager
- Allows you to specify all the resources needed

for your application in a declarative format
using yaml

- Repeatable Deployment Process

6.6.Data Transfer
- Storage Transfer Service

- import online data into Cloud Storage.

- repeating schedule

- transfer data within Cloud Storage, from

one bucket to another.

- Source: GCS, S3, URL

- Transfer Appliance

- one-time

- Rack, capture and then ship your offline

data to Google Cloud

- If you have a large number of files to transfer

you might want to use the gsutil -m option, to
perform a parallel (multi-threaded/multi-
processing) copy

- Compressing and combining smaller files
info fewer larger files is also a best practice for
speeding up transfer speeds

Avro Data Format :
5

- Is faster to load. The data can be read in
parallel, even if the data blocks
are compressed.

- Doesn't require typing or serialization.

- Is easier to parse because there are no

encoding issues found in other formats such as
ASCII.

- Compressed Avro files are not supported, but
compressed data blocks are. BigQuery
supports the DEFLATE and Snappy codecs.

7. Product Selection

- if there is a requirement to search terrabytes -
> petabytes of data relatively quickly it will
make more sense to simply store in BigQuery
(comparable to AWS Redshift).

-
- For DataStore, there is a possibility that this

could work as a replacement for Cassandra.

- It is most likely that BigTable will be a better

solution

- if the data set is relatively small < 10TB then

DataStore will be preferred.

- If the data set is > 10TB and/or there is no

requirement for multiple indexes then
BigTable will be better.

-
- Be aware of any limitations regarding indexes

and partitioning,

-

- Searching for objects by attribute value -
Datastore (bigtable only by single row key)

- High throughput writes of wide column data:
Bigtable

- Warehousing structured data - BigQuery

!

!

 6

 https://cloud.google.com/bigquery/docs/loading-data-cloud-storage-avro5

 https://cloud.google.com/storage-options/6

https://cloud.google.com/bigquery/docs/loading-data#loading_compressed_and_uncompressed_data

8. Case Study
There are 2 case studies which are as same as in
the GCP website: a logistic Flowlogistic
company and a communications hardware
MJTelco company. Each case study includes
about 4 questions which ask how to transform
current technologies of that company to use
GCP technologies. We can learn details about
these case studies in LinuxAcademy.

the correct answer is not necessary the best
technical solution but a solution that achieves
the right outcome for the company based on
their current limitations.
7

flowlogistic: https://cloud.google.com/
certification/guides/data-engineer/casestudy-
flowlogistic

- to find way to store the data that can be
commonly used by Dataproc and BigQuery

- Second both Dataproc and BigQuery
integrating with Cloud Storage well

-
mjtelco: https://cloud.google.com/certification/
guides/data-engineer/casestudy-mjtelco

Deconstructing a Customer Case: Data Engineer
Exam: https://www.youtube.com/watch?
v=r_yYDysfB-k

Other helpful case:

Spotify’s Event Delivery – The Road to the Cloud:
https://labs.spotify.com/2016/02/25/spotifys-
event-delivery-the-road-to-the-cloud-part-i/

9. Resources and
references

Resources:
- Google Data Engineering Cheatsheet: https://

github.com/ml874/Data-Engineering-on-GCP-
Cheatsheet

- Data Engineering Roadmap: https://
github.com/hasbrain/data-engineer-roadmap

- Whizlab Mock Exam

- Let me know any source is missing

Youtube Video to Watch:
Auto-awesome: advanced data science on
Google Cloud Platform (Google Cloud Next ’17):
https://www.youtube.com/watch?v=Jp-
qJFF9jww&list=PLIivdWyY5sqLq-
eM4W2bIgbrpAsP5aLtZ

Introduction to Google Cloud Machine Learning
(Google Cloud Next ’17): https://
www.youtube.com/watch?v=COSXg5HKaO4

Introduction to big data: tools that deliver deep
insights (Google Cloud Next ’17): https://
www.youtube.com/watch?v=dlrP2HJMlZg

Easily prepare data for analysis with Google
Cloud (Google Cloud Next ’17): https://
www.youtube.com/watch?v=Q5GuTIgmt98

Serverless data processing with Google Cloud
Dataflow (Google Cloud Next ’17): https://
www.youtube.com/watch?v=3BrcmUqWNm0

Data Modeling for BigQuery (Google Cloud Next
’17) https://www.youtube.com/watch?
v=Vj6ksosHdhw

Migrating your data warehouse to Google
BigQuery: Lessons Learned (Google Cloud Next

’17): https://www.youtube.com/watch?
v=TLpfGaYWshw

Webinar: Building a real-time analytics pipeline
with BigQuery and Cloud Dataflow (EMEA):
https://www.youtube.com/watch?
v=kdmAiQeYGgE

 https://www.linkedin.com/pulse/google-cloud-certified-professional-data-engineer-writeup-rix/7

https://cloud.google.com/certification/guides/data-engineer/casestudy-flowlogistic
https://cloud.google.com/certification/guides/data-engineer/casestudy-flowlogistic
https://cloud.google.com/certification/guides/data-engineer/casestudy-flowlogistic
https://cloud.google.com/certification/guides/data-engineer/casestudy-mjtelco
https://cloud.google.com/certification/guides/data-engineer/casestudy-mjtelco
https://cloud.google.com/certification/guides/data-engineer/casestudy-mjtelco
https://www.youtube.com/watch?v=r_yYDysfB-k
https://www.youtube.com/watch?v=r_yYDysfB-k
https://www.youtube.com/watch?v=r_yYDysfB-k
https://labs.spotify.com/2016/02/25/spotifys-event-delivery-the-road-to-the-cloud-part-i/
https://labs.spotify.com/2016/02/25/spotifys-event-delivery-the-road-to-the-cloud-part-i/
https://github.com/ml874/Data-Engineering-on-GCP-Cheatsheet
https://github.com/ml874/Data-Engineering-on-GCP-Cheatsheet
https://github.com/ml874/Data-Engineering-on-GCP-Cheatsheet
https://github.com/hasbrain/data-engineer-roadmap
https://github.com/hasbrain/data-engineer-roadmap
https://www.youtube.com/watch?v=Jp-qJFF9jww&list=PLIivdWyY5sqLq-eM4W2bIgbrpAsP5aLtZ
https://www.youtube.com/watch?v=Jp-qJFF9jww&list=PLIivdWyY5sqLq-eM4W2bIgbrpAsP5aLtZ
https://www.youtube.com/watch?v=Jp-qJFF9jww&list=PLIivdWyY5sqLq-eM4W2bIgbrpAsP5aLtZ
https://www.youtube.com/watch?v=COSXg5HKaO4
https://www.youtube.com/watch?v=COSXg5HKaO4
https://www.youtube.com/watch?v=dlrP2HJMlZg
https://www.youtube.com/watch?v=dlrP2HJMlZg
https://www.youtube.com/watch?v=Q5GuTIgmt98
https://www.youtube.com/watch?v=Q5GuTIgmt98
https://www.youtube.com/watch?v=3BrcmUqWNm0
https://www.youtube.com/watch?v=3BrcmUqWNm0
https://www.youtube.com/watch?v=Vj6ksosHdhw
https://www.youtube.com/watch?v=Vj6ksosHdhw
https://www.youtube.com/watch?v=Vj6ksosHdhw
https://www.youtube.com/watch?v=TLpfGaYWshw
https://www.youtube.com/watch?v=TLpfGaYWshw
https://www.youtube.com/watch?v=TLpfGaYWshw
https://www.youtube.com/watch?v=kdmAiQeYGgE
https://www.youtube.com/watch?v=kdmAiQeYGgE

