
Building Keyword Searches for 
Scanned Documents Using 

Amazon Textract 
  

August 2019 

  



Notices 

Customers are responsible for making their own independent assessment of the 

information in this document. This document: (a) is for informational purposes only, (b) 

represents current AWS product offerings and practices, which are subject to change 

without notice, and (c) does not create any commitments or assurances from AWS and 

its affiliates, suppliers or licensors. AWS products or services are provided “as is” 

without warranties, representations, or conditions of any kind, whether express or 

implied. The responsibilities and liabilities of AWS to its customers are controlled by 

AWS agreements, and this document is not part of, nor does it modify, any agreement 

between AWS and its customers. 

© 2019 Amazon Web Services, Inc. or its affiliates. All rights reserved. 

  



Contents 

Introduction .......................................................................................................................... 1 

Amazon Textract ................................................................................................................. 1 

How Amazon Textract Processes Documents ................................................................ 2 

Detecting Text .................................................................................................................. 2 

Analyzing Text .................................................................................................................. 2 

Invoice Processing Using Amazon Textract ....................................................................... 4 

Amazon S3 .......................................................................................................................... 6 

Amazon Elasticsearch Service............................................................................................ 7 

AWS Lambda ....................................................................................................................... 7 

AnalyzeInvoice Lambda Function ....................................................................................... 8 

Architecture ........................................................................................................................ 10 

Extending the Architecture ................................................................................................ 12 

Conclusion ......................................................................................................................... 13 

Contributors ....................................................................................................................... 13 

Document Revisions.......................................................................................................... 13 

 

  



Abstract 

Exchanging scanned documents is a crucial part of many business transactions today. 

Invoice processing is just one such example. After an invoice is received, the 

information it contains is scanned or manually entered into an ERP system and then 

routed to different groups for validation, approval, and payment. This whitepaper 

describes building a serverless solution for centrally storing scanned invoices and 

enabling keyword searches of those invoices using Amazon Textract.  



Amazon Web Services Building Keyword Searches for Scanned Documents Using Amazon Textract 

 Page 1 

Introduction 

A crucial part of many business transactions today is the exchange and processing of 

scanned documents. One such example is invoice processing, which is an end-to-end 

process with many different tasks to handle invoices that are received. After an invoice 

is received, the information it contains is entered into an enterprise resource planning 

(ERP) system, either manually or by using optical character recognition (OCR) software. 

Other downstream processing tasks complete the processing of the invoice based on 

the information extracted, such as transaction date, who ordered it, what were the 

items, how much did each item cost, and the amount of taxes paid. 

Two of the challenges customers face with invoice processing are: 

• How to digitally store invoices in a secure, centralized location that not only 

provides easy access but also is cost-effective 

• How to enable keyword-based searching of these invoices in a low-cost manner, 

while balancing speed with convenience and cost 

This whitepaper focuses on building a serverless solution for addressing these two 

challenges using Amazon S3, Amazon Textract, AWS Lambda, and Amazon 

Elasticsearch Service. After reading this whitepaper, you should be able to use these 

AWS services to perform keyword searches of scanned invoices that you have received 

from your vendors. You also should be able to search for information in these invoices 

using either the Kibana dashboard, or apps using the Elasticsearch APIs. 

Amazon Textract 

Amazon Textract1 is a managed service that automatically extracts text, data, tables, 

and key-value pairs from a scanned document. No machine language (ML) expertise is 

needed to use Amazon Textract, which can read many different types of documents and 

accurately extract text and data from those documents without the need to write code or 

manually customize and configure templates. It is built on the proven, highly scalable, 

deep learning technology that Amazon computer vision scientists use daily to analyze 

billions of images. Amazon Textract is available in the AWS Management Console,2 the 

AWS SDK,3 and the AWS Command Line Interface (CLI).4 

https://aws.amazon.com/textract/
https://aws.amazon.com/console/
https://aws.amazon.com/tools/
https://aws.amazon.com/cli/


Amazon Web Services Building Keyword Searches for Scanned Documents Using Amazon Textract 

 Page 2 

How Amazon Textract Processes Documents 

Amazon Textract can be used to detect text in a document, or to both detect and 

analyze text to find deeper relationships, such as whether specific text is part of a table 

or part of a form. Amazon Textract supports both synchronous and asynchronous 

processing. If you want to process a single page document and need a fast, real-time 

response with low latency, use synchronous processing. However, if you have a large, 

multipage document, or if you don’t require an immediate response, use asynchronous 

processing. 

Regardless of the processing method, Amazon Textract returns a JSON document that 

consists of an array of Block objects. Each block contains information about a detected 

item, such as its type, its location, its relationship with other items, and the confidence 

that Amazon Textract has in the accuracy of the processing. 

Detecting Text 

When used only to detect text, Amazon Textract returns the lines and words of text that 

it found in the document, the location of those items on the page, what page they are 

on, the relationships between the items on a page, and its confidence in the accuracy of 

the result. This information is returned in multiple Block objects. A block of type WORD 

contains information about a word, a LINE block contains information about a line, and a 

PAGE contains information about a page. Blocks are related to each other through 

parent/child relationships. 

Analyzing Text 

When used to analyze text, Amazon Textract not only detects text in the document but 

also analyzes that text to determine if the text is part of a table or a form. It also looks 

for text that can be represented as a key-value pair, such as text that is associated with 

a check box or radio (option) button.  

The analyze processing returns its information in Block objects of type TABLE, CELL, 

KEY_VALUE_SET, SELECTION_ELEMENT, KEY, and VALUE. These blocks are in 

addition to the PAGE, LINE, and WORD blocks returned by the detect text processing. 

These blocks are related through parent/child relationships. 



Amazon Web Services Building Keyword Searches for Scanned Documents Using Amazon Textract 

 Page 3 

Key-Value Pairs 

Amazon Textract can detect linked text items in the document as key-value pairs and 

returns multiple KEY_VALUE_SET block objects. In the following example, it can 

identify a key name of InvoiceNumber  and a value of IN000001: 

                               InvoiceNumber: IN000001  

 

Tables 

Amazon Textract can detect tables and returns multiple block objects, called TABLE, 

CELL, and WORD, that represent the table, a cell in the table, and a word in a cell of 

the table, respectively. For example, in the following image, Amazon Textract detects a 

table with six cells. 

 

Figure 1: Example Table for Amazon Textract 

Radio Buttons and Check Boxes 

Amazon Textract can detect radio buttons and check boxes in the document and 

returns a SELECTION_ELEMENT block. A SELECTION ELEMENT block can be 

associated with either a key-value pair or a table cell. 

  



Amazon Web Services Building Keyword Searches for Scanned Documents Using Amazon Textract 

 Page 4 

Invoice Processing Using Amazon Textract 

A typical invoice has text, key-value pairs, tables, check boxes, radio buttons, and forms 

in it. The analyzing text function of Amazon Textract is well suited for extracting this type 

of information and making it available for the downstream steps associated with invoice 

processing. 

In the following example, Amazon Textract is used to analyze the image of an invoice. 

Using the sample image in Figure 2, it identifies a table, key-value text pairs, and text.  

 

 

Figure 2: Sample Invoice 



Amazon Web Services Building Keyword Searches for Scanned Documents Using Amazon Textract 

 Page 5 

Figure 3 shows the table that was identified. 

 

Figure 3: Table Detected by Amazon Textract 

 

Figure 4 shows the text that was identified. 

 

Figure 4: Text Detected by Amazon Textract 



Amazon Web Services Building Keyword Searches for Scanned Documents Using Amazon Textract 

 Page 6 

Figure 5 shows the key-value pairs that were identified. 

 

Figure 5: Key-Value Pairs Detected by Amazon Textract 

To build the keyword search database for this sample serverless solution, the detect 

text processing of Amazon Textract is used. Using the example invoice image in Figure 

2, the detect text processing returns the keywords shown in Figure 6. 

 

Figure 6: Keywords Detected by Amazon Textract 

Note: Amazon Textract also returns the bounding box and other information that 
is not needed for this particular search solution. That information has been 
omitted from the results returned in Figure 6. 

Amazon S3 

Amazon Simple Storage Service (Amazon S35) is an object storage service built to store 

and retrieve any amount of data from anywhere. Amazon S3 provides easy to use 

management features so that you can organize your data and define fine-tuned access 

controls to meet your specific business, organizational, and compliance requirements. 

The main benefits of Amazon S3 are that it provides industry-leading performance, 

scalability, availability, durability, a wide range of cost-effective storage classes, 

https://aws.amazon.com/s3/


Amazon Web Services Building Keyword Searches for Scanned Documents Using Amazon Textract 

 Page 7 

unmatched security, compliance, audit capabilities, management tools for granular data 

control, and query services for analytics.   

For this solution, Amazon S3 will be the centralized location used to store all the 

uploaded invoices. Because it has limitless scalability, you don’t need to worry about 

running out of space. Amazon S3 provides a number of ways to upload documents and 

you can choose the method that works best for your use case. If you are using a web or 

mobile app, you can use the AWS SDK to upload the scanned invoices directly to an S3 

bucket.  

Only one S3 bucket is used in this solution, and it’s used to hold all the scanned 

invoices. Amazon S3 is seamlessly integrated with AWS Lambda using event triggering. 

This mechanism is used to invoke a Lambda function when an invoice is uploaded. The 

Lambda function calls Amazon Textract to extract the text and to store keywords in 

Elasticsearch. 

Amazon Elasticsearch Service 

Amazon Elasticsearch Service6 is a fully managed service that makes it easy to deploy, 

secure, and operate Elasticsearch at scale with zero down time. This service offers 

open-source Elasticsearch APIs, managed Kibana, and integrations with Logstash and 

other AWS services, enabling you to securely ingest data from any source and search, 

analyze, and visualize the data in real time. This solution uses Elasticsearch to store the 

keywords extracted from the invoices and to search for them using the Kibana 

dashboard or the Elasticsearch APIs. 

AWS Lambda 

AWS Lambda7 lets you run code without provisioning or managing servers. Lambda 

runs code on a highly available compute infrastructure and performs all of the 

administration of the underlying platform, including server and operating system 

maintenance, capacity provisioning, automatic scaling, patching, code monitoring, and 

logging. 

With Lambda, you can run code with zero administration. Lambda functions can be 

invoked either synchronously or asynchronously. You also can set up your code to 

automatically be triggered by other AWS services, or called directly from a web or 

mobile app. 

https://aws.amazon.com/elasticsearch-service/
https://aws.amazon.com/lambda/


Amazon Web Services Building Keyword Searches for Scanned Documents Using Amazon Textract 

 Page 8 

AnalyzeInvoice Lambda Function 
For this solution, one Lambda function, called AnalyzeInvoice, is used. This function 

calls Amazon Textract to process the uploaded invoices in the S3 bucket and to store 

the keywords in Elasticsearch. 

Figure 7 shows the AnalyzeInvoice Lambda function, which is written in Python. 

The AnalyzeInvoice Lambda function performs the following actions: 

1. Extracts the S3 bucket name and key from the event records. 

2. Creates the Amazon Textract client and makes a synchronous call to it, passing 

the S3 bucket name and key. 

3. Extracts the keywords from the result returned by Amazon Textract. 

4. Adds the keywords into the Elasticsearch index. 

This function uses an environment variable called ElasticSearchHost to obtain the 

host name of the Elasticsearch cluster. 

  



Amazon Web Services Building Keyword Searches for Scanned Documents Using Amazon Textract 

 Page 9 

import json 
import boto3 
import os 
from urllib.parse import unquote_plus 

from elasticsearch import Elasticsearch, RequestsHttpConnection 
 
def lambda_handler(event, context): 
    try: 
        #Get the bucket name and objectname 
        s3client = boto3.client('s3') 
        bucket = event['Records'][0]['s3']['bucket']['name'] 
        document = unquote_plus(event['Records'][0]['s3']['object']['key']) 
        documenturl = '{}/{}/{}'.format(s3client.meta.endpoint_url, bucket, document) 
         

        #Create boto3 client and call detect document text 
        client = boto3.client('textract') 
        #process using S3 object 
        response = client.detect_document_text( 
            Document={'S3Object': {'Bucket': bucket, 'Name': document}} 
        ) 
     
        #Get the text blocks 
        blocks=response['Blocks'] 

        text="" 

        for item in response["Blocks"]: 
            if item["BlockType"] == "LINE": 
                text += " "+item["Text"]+" " 
         
         
        addToESIndex(documenturl,document, text) 
        #print(text) 
    except Exception as e: 
     print(e) 
     raise e     

 
def addToESIndex(s3URI, objectName, text): 
        lambdaSession = boto3.Session() 
        region = lambdaSession.region_name 
        host=os.environ['ElasticSearchHost'] 
         
        es = Elasticsearch( 
                hosts = [{'host': host, 'port':443}], 
                use_ssl = True, 
                verify_certs = True, 

                connection_class = RequestsHttpConnection 
                ) 
        document = { 
                "name": "{}".format(objectName), 
                "s3URI": "{}".format(s3URI), 
                "content": text 
        } 
         
        es.index(index="textractsearch", doc_type="document", id=objectName, body=document) 

Figure 7: AnalyzeInvoice Function in Python 

  



Amazon Web Services Building Keyword Searches for Scanned Documents Using Amazon Textract 

 Page 10 

Architecture 

The architecture for the serverless invoice processing solution is shown in Figure 8. 

 

 

Figure 8: Serverless Invoice Processing Using Amazon Textract 

 

Your company vendors will upload the scanned invoices via either Amazon S3 ingestion 

methods or via your customer application using AWS SDK.  It will trigger the Lambda 

function called AnalyzeInvoice that will send the invoice to Amazon Textract for 

processing, extract the keywords from the Amazon Textract output and stores it in the 

Elasticsearch index. Here are the steps to deploy this architecture: 

1.  Create an S3 bucket to store the invoices uploaded from your vendors. 

 

2. Create an Elasticsearch domain and cluster. For instructions and more 

information, see Creating Amazon ES Domains.8 

 

3. Create an AWS Identity and Access Management (IAM) role for the Lambda 

function that has permission to access the S3 bucket and Amazon Textract. For 

example: 

https://docs.aws.amazon.com/elasticsearch-service/latest/developerguide/es-createupdatedomains.html#es-createdomains


Amazon Web Services Building Keyword Searches for Scanned Documents Using Amazon Textract 

 Page 11 

 [ 

  “Version”:”2012-10-17”, 

  “Statement”:[ 

   { 

      “Effect”:”Allow”, 

      “Action”:[ 

              “s3:*”, 

              “textract:*” 

              ], 

      “Resource”:”*” 

    } 

 ]  

 

4. At the time of publication of this whitepaper, the AWS SDK for Python (Boto3)9 

doesn’t include the Amazon Textract API. You must include it with your deployed 

code by creating a layer in Lambda using the Boto3 package. For details, see 

Creating an AWS Lambda Function in the Amazon Textract Developer Guide.10  

 

5. Deploy the AnalyzeInvoice function shown in Figure 7 with the role created in 

step 2, and with the layer created in step 4. You might need to modify the code if 

your Elasticsearch only allows specific IAM users.  

 

6. Create a trigger from the S3 bucket created in step 1 to the AnalyzeInvoice 

Lambda function. 

 

7. Create an environment variable called ElasticSearchHost for the 

AnalyzeInvoice function that points to the Elasticsearch host that you 

configured in step 2. 

 

8. Upload an invoice to the S3 bucket and check the Amazon CloudWatch log files 

for AnalyzeInvoice Lambda function entries to verify whether the request was 

processed successfully. 

 

  

https://aws.amazon.com/sdk-for-python/
https://docs.aws.amazon.com/textract/latest/dg/lambda.html


Amazon Web Services Building Keyword Searches for Scanned Documents Using Amazon Textract 

 Page 12 

After successfully deploying the solution, you should be able to search for keywords 

using the Elasticsearch Kibana dashboard. The search will look similar to this in the 

Kibana dashboard: 

 

If you expand the search result, it will show the Amazon S3 URI of the source invoice. 

 

Extending the Architecture 

You can extend this architecture by adding additional downstream processing steps 

using AWS Step Functions.11 For example, you could implement the following use 

cases: 

• Create a document workflow automation using Amazon Textract, Amazon 

Translate,12 and Amazon Comprehend.13 

https://aws.amazon.com/step-functions/
https://aws.amazon.com/translate/
https://aws.amazon.com/translate/
https://aws.amazon.com/comprehend/


Amazon Web Services Building Keyword Searches for Scanned Documents Using Amazon Textract 

 Page 13 

• Create an electronic discovery (e-discovery) application that involves multimedia 

processing and building a relationship graph in Amazon Neptune.14 A number of 

AI/ML services could be applied, such as Amazon Transcribe,15 Amazon 

Rekognition,16 Amazon Translate, and Amazon Comprehend. 

Conclusion 

This whitepaper provides a solution for building a keyword search for scanned invoices. 

You can use this solution as a basis for building keyword searches for any type of 

scanned document.  

Contributors 

Contributors to this document include: 

• Raja Mani, Solutions Architect, Amazon Web Services 

Document Revisions 

Date Description 

August 2019 First publication 

 

1 https://aws.amazon.com/textract/ 

2 https://aws.amazon.com/console/ 
3 https://aws.amazon.com/tools/ 
4 https://aws.amazon.com/cli/ 

5 https://aws.amazon.com/s3/ 

6 https://aws.amazon.com/elasticsearch-service/ 

7 https://aws.amazon.com/lambda/ 

 

Notes 

https://aws.amazon.com/neptune/
https://aws.amazon.com/transcribe/
https://aws.amazon.com/rekognition/
https://aws.amazon.com/rekognition/
https://aws.amazon.com/textract/
https://aws.amazon.com/console/
https://aws.amazon.com/tools/
https://aws.amazon.com/cli/
https://aws.amazon.com/s3/
https://aws.amazon.com/elasticsearch-service/
https://aws.amazon.com/lambda/


Amazon Web Services Building Keyword Searches for Scanned Documents Using Amazon Textract 

 Page 14 

 

8 https://docs.aws.amazon.com/elasticsearch-service/latest/developerguide/es-

createupdatedomains.html#es-createdomains 

9 https://aws.amazon.com/sdk-for-python/ 

10 https://docs.aws.amazon.com/textract/latest/dg/lambda.html 

11 https://aws.amazon.com/step-functions/ 

12 https://aws.amazon.com/translate/ 

13 https://aws.amazon.com/comprehend/ 

14 https://aws.amazon.com/neptune/ 

15 https://aws.amazon.com/transcribe/ 

16 https://aws.amazon.com/rekognition/ 

 

https://docs.aws.amazon.com/elasticsearch-service/latest/developerguide/es-createupdatedomains.html#es-createdomains
https://docs.aws.amazon.com/elasticsearch-service/latest/developerguide/es-createupdatedomains.html#es-createdomains
https://aws.amazon.com/sdk-for-python/
https://docs.aws.amazon.com/textract/latest/dg/lambda.html
https://aws.amazon.com/step-functions/
https://aws.amazon.com/translate/
https://aws.amazon.com/comprehend/
https://aws.amazon.com/neptune/
https://aws.amazon.com/transcribe/
https://aws.amazon.com/rekognition/

	Introduction
	Amazon Textract
	How Amazon Textract Processes Documents
	Detecting Text
	Analyzing Text
	Key-Value Pairs
	Tables
	Radio Buttons and Check Boxes


	Invoice Processing Using Amazon Textract
	Amazon S3
	Amazon Elasticsearch Service
	AWS Lambda
	AnalyzeInvoice Lambda Function
	Architecture
	Extending the Architecture
	Conclusion
	Contributors
	Document Revisions

