
SPARK & RDD

CHEAT SHEET

Spark & RDD Basics

It is an open source, Hadoop compatible fast and expressive cluster

computing platform

A p a c h e S p a r k

The core concept in Apache Spark is RDD (Resilient Distributed Datasheet) ,

which is an immutable distributed collection of data which is partitioned

across machines in a cluster.

Transformation: It is an operation on an RDD such as filter (), map () or

union () that yields another RDD.

Action: It is an operation that triggers a computation such as count (), first

(), take(n) or collect ().

Partition: It is a logical division of data stored on a node in a cluster

R D D

Broadcast variables: It is a read only variable which will be copied to the

worker only once. It is similar to the Distributor cache in MapReduce.

We can set, destroy and unpersist these values. It is used to save the

copy of data across all the nodes

Example syntax:

broadcastVariable = sparkContext.broadcast(500)

broadcastVariable.value

Accumulators: The worker can only add using an associative operation, it

is usually used in parallel sums and only a driver can read an accumulator

value. It is same as counter in MapReduce. Basically, accumulators are

variables that can be incremented in a distributed tasks and used for

aggregating information

Example syntax:

exampleAccumulator = sparkContext.accumulator(1)

exampleAccumulator.add(5)

S h a r e d V a r i a b l e s o n
S p a r k

It holds a connection with spark cluster management

Driver: The process of running the main () function of an application and

creating the SparkContext is managed by driver

Worker: Any node which can run program on the cluster is called worker

S p a r k C o n t e x t

Spark SQL: It is a Spark module which allows working with structured

data. The data querying is supported by SQL or HQL

Spark Streaming: It is used to build scalable application which provides

fault tolerant streaming. It also processes in real time using web server

logs, Facebook logs etc. in real time.

Mlib(Machine Learning): It is a scalable machine learning library and

provides various algorithms for classification, regression, clustering etc.

Graph X: It is an API for graphs. This module can efficiently find the

shortest path for static graphs.

U n i f i e d L i b r a r i e s i n
S p a r k

It is used to allocate resources to each application in a driver program. There are 3 types

of cluster managers which are supported by Apache Spark

• Standalone

• Mesos

• Yarn

C l u s t e r M a n a g e r

FURTHERMORE:
Spark Certification Training Course

Executors: It consists of multiple tasks; basically it is a JVM process sitting on

all nodes. Executors receive the tasks, deserialize it and run it as a task.

Executors utilize cache so that so that the tasks can run faster.

Tasks: Jars along with the code is a task

Node: It comprises of a multiple executors

RDD: It is a big data structure which is used to represent data that cannot be

stored on a single machine. Hence, the data is distributed, partitioned and

split across the computers.

Input: Every RDD is made up of some input such as a text file, Hadoop file

etc.

Output: An output of functions in Spark can produce RDD, it is functional as

a function one after other receives an input RDD and outputs an output

RDD.

C o m p o n e n t s o f S p a r k

Function Transformations Description

map(function) Returns a new RDD by applying function on element

filter(function)
Returns a new dataset formed by selecting those

elements of the source on which function returns true

filterByRange(lower, upper) Returns an RDD with elements in the specified range

flatMap(function)
It is similar to the map function but the function

returns a sequence instead of a value

reduceByKey(function,[num Tasks]) It is used to aggregate values of a key using a function.

groupByKey([num Tasks]) To convert(K,V) to (K, <iterable V>)

distinct([num Tasks]) This is used to eliminated duplicates from RDD

mapPartitions(function) Runs separately on each partition of RDD

mapPartitionsWithIndex(function)
Provides function with an integer value representing

the index of the partition

sample(withReplacement,

fraction, seed)

Samples a fraction of data using a given random

number generating seeds

union()
This returns a new RDD containing all elements and

arguments from source RDD

intersection()
Returns a new RDD that contains an intersection of

elements in the datasets

Cartesian() Returns the Cartesian product of all pair of elements

subtract()
New RDD created by removing the elements from the

source RDD in common with arguments

join(RDD,[numTasks])

It joins two elements of the dataset with common

arguments. When invoked on (A,B) and (A,C) it

creates a new RDD (A,(B,C))

cogroup(RDD,[numTasks]) It converts (A,B) to (A, <iterable B>)

Action Functions Description

count() Get the number of data elements in the RDD

collect() Get all the data elements in the RDD as an array

reduce(function)
It is used to aggregate data elements into the RDD

by taking two arguments and returning one

take(n) It is used to fetch the first n elements of the RDD

foreach(function)
It is used to execute function for each data element

in the RDD

first() It retrieves the first data element of the RDD

saveastextfile(path)
It is used to write the content of RDD to a text file or

set of text files to the local system

takeordered(n,

[ordering])

It will return the first n elements of RDD using either

the natural order or a custom comparator

Persistence Method

Function
Description

cache()
It is used to avoid unnecessary recomputation .

This is same as persist(MEMORY_ONLY)

persist([Storage Level]) Persisting the RDD with the default storage level

unpersist()
Marking the RDD as non persistent and removing

the block from memory and disk

checkpoint()
It saves a file inside the checkpoint directory and

all the reference of its parent RDD will be removed

RDD Persistence Method

Functions
Description

MEMORY_ONLY (default level)
It stores the RDD in an available cluster

memory as deserialized Java object

MEMORY_AND_DISK

This will store RDD as a deserialized Java

object. If the RDD does not fit in the cluster

memory it stores the partitions on the disk

and reads them

MEMORY_ONLY_SER
This stores RDD as a serialized Java object,

this is more CPU intensive

MEMORY_ONLY_DISK_SER
This option is same as above but stores in a

disk when the memory is not sufficient

DISC_ONLY This option stores RDD only on the disk

MEMORY_ONLY_2,

MEMORY_AND_DISK_2, etc.

This is same as the other levels except that

the partitions are replicated on 2 slave

nodes

Partitions

Compute function

Dependencies

Meta-data (opt)

Partioner (opt)

RDD

Spark SQL
Hive support

Spark
Streaming

Mlib
Machine Learning GraphX

Apache Spark (Core engine)

Tachyon
Distributed Memory-centric Storage system

Hadoop Distributed File System

MESOS or YARN
Cluster Resource manager

https://intellipaat.com/
https://intellipaat.com/apache-spark-training/

