
WEEK 1 

 

Learning Objectives 

● Explain the benefits of organizing data for later use 

● Relate categories of activities for database systems to the success of 

relational databases and the use of SQL with them 

● Differentiate between operational and analytic databases 

 

1.1 WHAT IS DATA? 

 

Data analysts work with guess what? Data. Starting from the beginning: What Is 

Data? In this specialization, data means digital data. Information that can be 

transmitted, stored, and processed using modern digital technologies, like the 

Internet, disk drives, and modern computer.  

 

Imagine that you walk by a movie theater and see a movie poster about a new 

movie you want to see. You enjoy the image and you read to find out about the 

actors in the movie. And the showtimes at the local theater. So you get information 

that is interesting and useful to you. But does the site of the movie poster itself 

comprise data?  

 

No, the poster presents an image to your eye. Which you read and interpret to get 

the actors' name and the showtimes. So an actual object or a direct sensory 

experience is not really data. But you can have data about those things. Data is a 

representation of something that captures some features and ignores others. Now 

data itself can be divided into two kinds, analog data and digital data. A photograph 

of the movie poster taken with a film camera is not digital data. An image from 

photographic film results from chemical processes on photosensitive materials 

with essentially infinite continuous ranges of color on paper.  



 

In contrast, a digital scan of the movie poster or a photo taken with a smartphone 

is digital data. It can be saved, copied, sent to another smartphone, displayed on 

many screens, so on. A film photograph requires mechanical and chemical 

processes to reproduce. But a smartphone photograph is just numbers stored in 

the phone. These numbers can be copied to cloud storage, sent to another device, 

displayed on any number of screens. This may sound a bit philosophical but it's 

worthwhile to notice the transition from things to representations of those things 

as data. And since data analysts work with data, it's a basic skill to be able to identify 

what is and is not data. Also please note that from now on, whenever I say data, I 

always mean digital data unless I specifically say otherwise.  

 

1.2 WHY ORGANIZE DATA? 

 

Remember the movie poster from the last video. You look at the image and with 

the superpower of your own human brain, you interpret what you see to answer 

some simple questions. Who are the actors in the movie? What are the showtimes 

at this theater? You organize the sight of the poster to get some information that 

interests you. If you take a photograph of the movie poster with your phone, you 

do have data, but the form of the data as image pixels determines what use you 

can easily make of that data. Think about what you need to do if I share with you 

my photographs of every movie poster on display in a city, and then you want to 

find all the movies starring one certain actor. Now, imagine a simple table or 

spreadsheet with each row containing the movie title, the actor names and the 

showtimes.  

 

This may not be as aesthetically pleasing as the pictures of posters, but it makes 

things much simpler if you want to find a movie with some actor or answer some 

simple questions about a movie. Notice, of course, you cannot answer any 

questions about information that is not included in your data. For instance, your 

table with movie title, actor names and showtimes, cannot tell you whether there 

are tickets available for a certain showing of the movie. What if instead of sharing 

my movie poster photos, I share all my photos including shots of restaurant menus, 

friends I meet, buildings I like. This may carry more information but it makes it even 



tougher for you to answer a simple question about what movies are showing with 

a certain actor.  

 

The important thing to learn here is that the organization of data has a major 

impact on how easily you can use the data to answer questions. At this point, I'd 

like to establish a few terms. By the way, you may have colleagues who use these 

terms with a meaning similar to the definitions here but not identical. It's OK as 

long as you know that the meanings given here are generally accepted and you can 

clear up the details with your colleagues if any confusions arise.  

A data store is a collection of data of any type. This is a general term and it can be 

used for collections of different sizes. For instance, I could call the collection of 

photos on my smartphone a data store. I might have a cloud storage account with 

photos, videos and text messages. This is a different, larger data store, and I could 

upload all my photos from my phone to this larger data store. The service that 

maintains my cloud storage also has a much larger data store of all the documents 

saved by all of its users. A database is an organized data store.  

 

A simple example of a database is a spreadsheet containing movie titles, actors, 

and showtimes. You can even organize your photos and call that a database. A 

database can contain organized data about different topics. For instance, I can have 

another spreadsheet of movie theaters, with name of the theater, address, and 

parking information, if available. If I like, I can keep the movie spreadsheet and the 

theater spreadsheet together in the same folder, and I can call those different parts 

of the same database. A type of software that helps you organize data is a database 

management system or DBMS. A DBMS enables you to create a database, add and 

update data, and easily retrieve data based on its organization. Electronic DBMSs 

were first developed in 1960s and have enjoyed increasingly widespread use since 

then. Informally, you may call the combination of your database and the DBMS 

software you use a database system.  

 

 

 



1.3 DATA EXTRACTION FROM DIGITAL IMAGES 

 

The examples involving the movie poster, and the information you obtain by 

reading it, invite the question: If I have a digital photograph of a movie poster, 

couldn't reading the photo be a form of data analysis? 

 

The answer is certainly yes, but that image processing would be a kind of data 

analysis that is very different from the focus of this course and specialization. This 

reading covers such image processing and related topics briefly. 

 

To have a computer with a digital camera "see" a movie poster, and then interpret 

the image in a useful way, is in the general domain of computer vision. Identifying 

objects or letters represented in a digital image is a kind of classification, a type of 

machine learning in increasing use today. 

 

A classifier is a type of computer program that can take records with potentially 

many data points, and can infer one or more simple categorical values that are 

suitable for the record. For example, given a picture of an object (a record with 

many pixel values), name the object (say, "cat," "house," or "table"). The program 

performs the computational task of resolving all the pixel values to the simple label.  

 

Modern classifiers can "learn" how to classify pictures by first being presented with 

a large number of pictures that are already properly labeled. Even after "seeing" 

millions of examples, a classifier system may well mislabel a new picture with 

different lighting, or a new style of house or table, or an image presented from a 

different camera angle. Users of such systems always measure accuracy by 

reporting what percentage of the labels coming from the program are correct:  

 

computer systems are not perfect at classifying images. Even the latest, profoundly 

compute-intensive algorithms like deep learning systems report a percentage of 

successful classification tasks, not perfect accuracy. 



 

When you think about it, it's not just a problem with computers: people are not 

always 100% accurate in identifying what they see, either. However, considering 

the number of neurons in your brain, and the amount of sensory input you have 

processed in your life, it's no surprise that you can far outperform a computer in 

looking across the street at a movie poster and extracting its information from your 

visual field.  

 

Autonomous vehicles represent a great technical accomplishment in computer 

vision (and other forms of signal processing), but in the near term you can expect 

these applications to require more restricted settings than the ones an average 

human driver can manage, such as unpaved roads, pedestrians, animals, or 

unexpected changes in terrain. 

 

By the way, one narrow form of computer vision is already in wide, successful use: 

optical character recognition, or OCR. If you have an image—a record of pixels—

and you know you are looking for letters or numeric digits, it's a relatively simple 

matter to scan the image for those characters and signal when and where they 

appear. The success of OCR systems today is evident when you deposit a check in 

an automatic teller machine or scan it using a mobile check deposit app. The 

software finds the images of digits for the check amount and interprets each digit 

as one of the ten printed numerals, 0, 1, 2, up to 9. Still, the ATM or app will typically 

require you to verify the amount, to confirm the accuracy of the OCR software! 

 

This reading began with the question, if I have a digital photograph of a movie 

poster, wouldn't reading the photo be a form of data analysis? Working with the 

compute-intensive, somewhat fuzzy problems of image recognition can be called a 

form a data analysis, but the work of someone with the job title of data analyst is 

likely to be rather different.  

 

Big Data Analysis with SQL, the subject of this specialization, focuses on the use of 

data records that are already very well organized with clearly defined features: 



records such as customer orders, airline flights, or store items. A data scientist, 

working with machine learning algorithms, may extract some clear features from 

data such as images, even though the accuracy of such features must be assessed 

as less than perfect, and you can then go on with analysis using the SQL tools you 

will learn here. Indeed, modern enterprises gain useful insights from the mass of 

data they have today using an interplay of the data analysis skills you will develop 

here, and statistical techniques such as machine learning. 

 

1.4 WHAT DOES A DBMS DO? 

 

Stop a minute to consider the likely clutter of files on your phone or your computer. 

What are the consequences of the amount of organization or lack of organization 

in your own data? What if you had 100 times or 1,000 times more data than you 

have now? What if you need to share your data with other people, and they need 

to share with you?  

 

A database management system can't solve all your data organizing problems but 

it can certainly help. If you look up the term database management system on the 

web, you'll quickly find some definition that says a DBMS is software that gives you 

a systematic way to organize and manage your own data in one or more databases. 

The DBMS should give you a way to perform at least four general activities. You 

need to design the kinds of data your database will hold, change what data you 

have in your database, get data out of it, and manage who has access to different 

parts of your data. Right there, you have four different activities you want to 

perform with data.  

 

Working with digital data, you need some way to consistently, systematically, 

perform those four activities. So, the DBMS helps you design, update, retrieve, and 

manage your data in a consistent way. I'm going to discuss each of these activities 

in turn. When you design a database, you decide what kinds of data you want to 

have and you set up different places where you want to put different kinds of data. 

Picture a kitchen; it will have one place for plates, another place for glasses, and 

another place for eating utensils like forks and spoons. Designing a database is 



similar to setting up those places, deciding what different kinds of things you'll 

keep, and where they'll go. For instance, a database for a restaurant can have 

records about food ingredients, and different records about employee hours at the 

restaurant, and still different records about customer sale receipts.  

 

Of course for data, you have not only different places for different types of data, 

but you also have different features for those different data records. For instance, 

you can have weights or item counts for food ingredients, or money amounts for 

sales receipts. The DBMS should help you set this up and keep your data organized. 

When you update a database, you add data, change data that's already there, or 

remove data. For the kitchen, suppose you buy 100 mangoes for a special seasonal 

dessert, over a busy weekend you use half the mangoes, so you have 50 left. Then 

over the next four days, you use up the rest. You can make changes to the data in 

your database as these changes occur. Buy 100 mangoes, new record. Use half the 

mangoes, change the quantity. Use the rest, remove the record. When you record 

your purchases and consumption of food items in the database, it helps you to 

consistently keep track of your inventory.  

 

The next general type of activity is surely one of the main reasons for you to have 

a database: you use it to answer questions. In other words, you retrieve data. If you 

keep the database for your restaurant up-to-date, you can easily use it to find out 

the answers to many questions. How many mangoes do I have on hand right now? 

How much salt do I have for cooking? How much sugar? What were the total 

restaurant sales last week? Finally, the DBMS helps you manage your data. The 

word "manage" can mean a number of things, but here I mean, the need to control 

access to your data. You want to set up different user accounts with different 

access to different parts of the data. For the restaurant database, your kitchen staff 

persons need to update and retrieve data about the food inventory, but not your 

employee pay records. Your accountant needs access to the pay records, and so 

on. The initial electronic databases were created in the 1960s. Those were the early 

days of electronic computing systems for business. Using the best technologies at 

the time, engineers cobbled together ways to perform these four activities. And 

then in 1970, a man named E.F. Codd published an article that revolutionized the 

way we think about database systems, and that new way of thinking became 

common and remains incredibly useful today. More about that in the next video. 



 

1.5 RELATIONAL DATABASES AND SQL 

 

E.F. Codd was working at an IBM research facility in San Jose, California in 1970 

when he published his pioneering paper, “A Relational Model of Data for Large 

Shared Data Banks.” This paper appeared in the premier academic journal of 

computer science, the Communications of the Association for Computing 

Machinery, or just the CACM. Don't we love our acronyms? Codd's colleagues, Don 

Chamberlin and Ray Boyce, designed several computer languages expressly to 

implement Codd's ideas for working with data. In 1974, they settled on the 

language they called Structured Query Language, also called SQL, which may also 

be pronounced "sequel"—another acronym.  

 

Codd's paper is the basis of relational database management systems or RDBMSs. 

SQL was especially made to work with RDBMSs. Nearly all of the popular database 

systems since the 1980s are relational systems and nearly all of those use SQL as 

their primary language. Some examples of SQL-based relational systems are Oracle, 

SQL Server, MySQL, DB2, PostgreSQL, Microsoft Access, and SQLite. Note, the big 

data era has seen the rise of other types of databases called "NoSQL" databases. 

That is a topic for later in this course. The great thing about SQL is that it's so simple 

and easy to learn. All four of the database activities from the previous video are 

their own simple commands in SQL.  

 

The holding areas for different kinds of data in SQL are called tables. When you 

design your database, you set up different tables for different kinds of data. There 

are simple commands or statements to create a table, change what types of 

records that table will hold, or discard the table from your database. The SQL 

commands for these are, simply enough, CREATE, ALTER, and DROP. These 

commands cover the activity of designing, or more accurately defining, your 

database, and together they form a category of SQL commands called Data 

Definition Language or DDL.  

 



Don't be intimidated by the word "language" in the label "Data Definition 

Language." It's just a category of SQL commands that performed one of the four 

activities I've already identified for a database management system. The next 

activity you want to perform is to update the data in your database. You want to 

add records to tables, change some of the data in those records, and remove 

records. The SQL commands for those actions are INSERT, UPDATE and DELETE.  

They form the SQL category of Data Manipulation Language or DML.  

 

Of course, once you set up your tables and then put some data into your database, 

you can do one of the main things people do with data: you can ask questions about 

it. The SELECT statement is the superstar of the SQL commands. It is the one 

command in SQL for asking questions and getting answers out of your database. 

The SELECT statement is so important that it has its own category all by itself: the 

Data Query Language category or DQL.  

 

Finally, to have different users with different roles use your database, you can use 

the SQL statements GRANT and REVOKE in the category of Data Control Language 

or DCL. You can use the GRANT statement to create a user account or give a user 

certain privileges in your database. REVOKE can remove a privilege that was 

previously granted. For instance, you might want your users Natasha and Talia to 

be able to see and change what's in the employee table, while user Daniel can only 

see what's in the table, and user Meg shouldn't see the employee table at all.  

 

The GRANT and REVOKE commands give you simple ways to manage these 

different kinds of access. Now you know the four general types of database 

activities in the basic SQL commands for them. The order of the statements given 

here has some meaning. You must create a table before you can put any data into 

it, and then you must put data into the table before you can query it. However, if 

you go by how often you will use these statements, it's a different order. SELECTs 

are what you will do the most often by far. DML statements take second place and 

DDL and DCL maybe fairly rare. So, here you have the most fundamental SQL 

statements and their categories. I suggest that you make sure you are familiar with 

these terms. If they are new to you, you may want to copy this list out by hand and 



look at it often for a few days. Remind yourself of the meanings of these terms until 

you can use them all comfortably in conversation. Please see the reading this week, 

with a few special notes about SQL. 

 

In the video "Relational Databases and SQL," I presented some basic SQL 

commands, which fall into four well-known categories. The following three notes 

provide some detail and warnings about those categories. 

 

1.6 THREE NOTES ABOUT SQL  
 

Rare or (sometimes) muddy terms: DQL, DML, query. 

The terms on my list are all commonly used in discussions about relational 

databases and SQL, with one exception: DQL (Data Query Language). Because DQL 

is a category with only one statement in it, some people may never learn or say 

"DQL"; they just say "SELECT." 

 

In fact, some people include the SELECT statement in the category of DML. I don't 

use that classification (and I think I'm in the majority), but when you're talking to 

someone new, be aware that you may need to clear things up with them when they 

say "DML": Do they mean INSERT-UPDATE-DELETE statements, or do they also 

include SELECT in the DML category? 

 

There's one more muddy word: query. For most people, the word query is another 

name for the SELECT statement. This is reasonable, because the English word query 

is another word for question, and whenever you ask the database a question, you 

do so by issuing a SELECT statement. But for some people, query can refer to any 

SQL statement, of any kind at all! This doesn't make good sense to me, but I've 

heard the words "database query" used in this way many times through the years. 

 

1.7 COMMANDS, IN AND OUT OF SQL 

 



I've started here with just the beginning, foundational concepts of SQL. These are 

not the only commands in SQL, and you'll quickly learn others. For example, you'll 

probably like the DESCRIBE command, to remind you of the details about how you 

designed a table. Or there's UPSERT, a funny kind of statement that can be an 

INSERT or an UPDATE depending on the circumstances. 

 

There are even some commands that are provided with most database systems, 

but that are not SQL statements, like commands for backing up a database, or 

importing data from some other data store into your database. If there's no regular 

SQL command for something you need to do, that's okay; you'll just need to learn 

the particular command you need in the particular program you're using. 

1.8 STANDARDS AND SQL DIALECTS 

 

Speaking of different commands, there's a twist on SQL itself. The worldwide 

engineering community has developed a standard for SQL. SQL has evolved and 

grown over the years, and so the "official standard" has been revised and 

republished several times. However, almost no commercial vendor actually 

implements standard SQL exactly, 100 percent. (In fact, in the late 1980s, 

competing companies lobbied to get features into the standard that their 

competitors didn't have, and so the standard became inconsistent and no one 

program could possibly be 100 percent compliant with the standard at that time!) 

 

So, you really have different SQL dialects for different software programs. Although 

most SQL systems are at least 90 or 95 percent alike, every system will have its own 

peculiar dialect, with some small differences in the exact commands that are 

available, or some optional details in the commands. I'm giving you fundamental 

concepts of SQL in these early weeks. My suggestion is that whenever you actually 

use a new SQL-based program, you should familiarize yourself with the particular 

SQL dialect that is special to that program. Then when you use a different program, 

learn its SQL dialect. You'll quickly deepen your understanding of both SQL in 

general and the particular use of SQL in the various programs you use. That is 

exactly the approach in the later courses of this specialization. 

 



1.9 THE SUCCESS OF RDBMSS AND SQL 

 

Ask anyone who's been around computing for a long time, and they'll tell you. 

Relational databases and SQL have enjoyed wide use for a remarkably long time. I 

can give several reasons for the success of RDBMSs and SQL.  

 

 1: E.F. Codd's original idea of the relational model is a brilliant, 

mathematically rigorous idea. His concept organizes the use of data that is 

clean and flexible, allowing users to access data from many different starting 

points with equal ease. In fact, Codd's work on the relational model was so 

groundbreaking that he received the ACM Turing Award for this work in 

1981. The Turing award is the highest award there is in the computer science 

world, the Nobel Prize of computing.  

 2: SQL, which was originally developed for relational databases, is easy to 

learn and use. It covers most of the operations you want to perform, in a 

simple, coherent language. There is one RDBMS called Rel that does not use 

SQL, but every other one I know, does.  

 3: Both the relational model and SQL provide precise concepts for organizing 

and using data, but without any low level details about how an actual 

program should do the work. As a result, many different implementations of 

the relational model in SQL have been possible using different computers, 

different file systems, operating systems, programming languages. 

Innovators have kept coming up with lighter or cheaper or faster programs 

that still keep to the general design of a SQL-based RDBMS.  

 4: Most RDBMSs even provide ODBC (Open Database Connectivity), and 

JDBC (Java Database Connectivity), interfaces. These allow virtually any 

programming language to issue SQL commands to a database. As a result, 

nearly any program of any kind that needs to maintain some data from day 

to day can do so, using some form of RDBMS. There are probably several 

relational databases embedded in your phone right now.  

 5: Because RDBMSs and SQL have already "solved the problem" of managing 

data, engineers can build specialized applications that use RDBMS software 

to handle the data. For example, applications for accounting or legal libraries 

or medical records to name just a few. There are countless tools that add 



useful functions to databases as well, like reporting and graphical displays of 

data.  

 6: Because SQL is so common and so many applications and tools "speak 

SQL," there's even been a surge of data stores that are not relational 

databases, but that still provide some dialect of SQL. There's great advantage 

in keeping to "the SQL way of thinking," even with non-relational systems, so 

that well established user skills and software skills that use SQL can be easily 

adapted to work with these new data stores. If you already know SQL then 

you'll find that this specialization will teach you to adapt your SQL skills to 

the new big data environment. The links below direct you to Codd's paper, 

which I referred to in the videos, and also to a paper by Don Chamberlain on 

the early days of SQL. These are excellent articles to read if you are interested 

in knowing more about the beginnings of relational databases.  

 

    E.F. Codd, "A relational model of data for large shared data banks", 

https://dl.acm.org/citation.cfm?doid=362384.362685 

 

    Donald D. Chamberlain, "Early History of SQL",  

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6359709 

 

 

1.10 OPERATIONAL AND ANALYTIC DATABASES 

 

Comparing Operational and Analytic DBs: SELECT Statements 

Both operational and analytic databases are readily supported using RDBMSs and 

SQL. Both use DDL and DCL statements to define, organize, and manage the kinds 

of data to keep. For smaller applications, you can use the same RDBMS software 

for either type of database. In fact, you may even have one database serving both 

purposes.  

 



However, the distinct needs of some applications can drive these two different 

types of databases to have marked differences. I wanted to distinguish between 

search and analysis as general query types. By search, I mean directly finding some 

data that's explicitly present in the database. For instance, given a customer's 

name, what is their phone number? This lookup function can be quite useful and is 

nearly the simplest kind of database query.  

 

But SQL SELECT statements can also do many types of analysis in which your queries 

combine different parts of the data to uncover new information. Here are two 

simple analytical questions. In which months of the year are there more house sales 

in some city? What college course is taken the most often by second year college 

students? This information may be implicit in a database, but may require more 

complex queries than just a lookup to find the answers. Now, an operational 

database will usually serve mostly search queries, and an analytic database will 

serve mostly analytic queries. This is not a hard distinction. You'll use a mix of 

SELECT statements in most databases. But there is a pull toward mostly one or the 

other type. The operational system provides a kind of short-term memory to your 

applications. It allows programs to retrieve current data in order to keep up with 

some current state of affairs. While in analysis you look deeper and deeper into 

some dataset to gain more and more understanding.   

 

1.11 COMPARING OPERATIONAL AND ANALYTIC DBS: DML ACTIVITY 

 

Another difference between operational and analytic databases is in their 

frequency and type of SQL activity, especially DML activity, that you'll see more 

often. Remember, DML, or Data Manipulation Language, refers to INSERT, 

UPDATE, and DELETE statements, and these insert, update, and delete records in 

your database tables. Think about a database for airplanes entering and leaving an 

airport. Every time a plane approaches, a record is added to the database.  

 

As the plane moves into landing and taxiing, its position is updated in the database. 

When the plane flies away, its record maybe deleted. The database should accept 

individual DML statements updating the status of each plane. So, for a busy airport, 



this can mean many DML statements per minute. The database also serves many 

SELECT statements per minute as different display and coordination systems keep 

track of the planes continually.  

 

There's a well-known acronym for this mix of activities: CRUD, for Create, Retrieve, 

Update, Delete. An INSERT statement creates a record, a SELECT statement 

retrieves records, and UPDATE and DELETE statements update and delete records. 

I know the word "create" here is used to refer to the SQL INSERT statement, not 

the SQL's CREATE statement that creates a table, but I didn't make up the acronym! 

The word describes the continuous activity you can expect in an operational 

database, a mix of DML and SELECT statements.  

 

That's what the operational system does. CRUD, CRUD, CRUD, all day long. For 

some people, crud is another word for junk, but certainly no insult is meant by 

CRUD here. Larger operational database use cases are often characterized by the 

number of database operations per unit time that they perform on average and at 

peak: often in the thousands of operations per second, and sometimes over a 

million database operations per second. A further characteristic is the "read-write 

mix." What percentage of these operations are SELECTs and what percentage are 

DML statements? Notice though that the understanding is that it's all CRUD activity. 

DDL and DCL are typically not everyday occurrences. In contrast to operational 

systems, an analytic database will usually not undergo continuous DML.  

Suppose you want to learn about traffic patterns for the last year. You may obtain 

data from a separate data store about traffic delays over the last 24 hours; maybe 

you'll get this from an operational database. Every night you copy those records 

into your analytic database, and additionally you accumulate several years' worth 

of data. In the nightly activity, you add hundreds or thousands of new records in 

one go. The nature of the nightly addition of new data is not continuous DML, but 

a bulk load of new data. You may also use bulk loads to bring other static data stores 

into your analysis. For instance, you may want to include census data about the 

population density in different areas to enrich your understanding of traffic 

patterns. Another term for bulk load is data import. SQL does not have a standard 

statement for importing data in bulk, but most DBMSs do provide utilities or 

commands for doing so.  



 

1.12 OPERATIONAL AND ANALYTIC DATABASES: FURTHER COMPARISONS 

 

By now, I'm sure you've guessed that analytic databases are often larger in size 

than operational databases. If one database contains traffic data for one day, and 

another contains similar data covering three years, it stands to reason that the 

second database will have around a thousand times more data. Really, the size of 

an analytic database is often limited only by the maximum amount of data you can 

store and having more records can potentially yield more insights. Finally, I want to 

point out that at larger scales, the differing needs of operational and analytic 

database applications have pushed the development of different database 

technologies. Some operational systems support high volumes of DML statements, 

but limit dataset sizes to no more than a few thousand or a few million records 

total.  

Other analytic systems will instead support sophisticated analytic SELECT 

statements, and even other analytic techniques against much higher volumes of 

data, while preferring bulk loads as a way to add data. I'll say more about the 

technical differences between operational and analytic databases next week. And 

I'll cover an important category of operational databases: transactional systems. 

Then later in the course, I'll expand the technical discussion of the differences 

between operational and analytic systems, as we move into big data.  

 

  



WEEK 2 

 

Learning Objectives 

● Apply concepts of table and column design to existing data to identify 

compatibility between design and data 

● Defend a preferred approach to database design (normalized or 

denormalized) based on a database's intended use 

● Explain why database transactions and special features associated with Data 

Manipulation Language are not critical for analytic databases 

Do you think relational databases get that name because they contain related 

tables? No! Would you guess that a "denormalized table" is called that because it's 

unusual? No! ACID (Atomicity, Consistency, Isolation, Durability) No. This week, I'll 

give you the concepts and special vocabulary that are common to all users of SQL 

and relational databases. You'll learn about the fundamentals of database design, 

and what primary keys, foreign keys, and database triggers are. These concepts are 

essential to your being fluent in the different uses of SQL on data, big and small. If 

you already know SQL, you'll get through this week very quickly, but maybe, you'll 

find the material interesting, and maybe I'll fill in a few gaps for you. And, I hope 

you'll go to the discussion boards and help round out the concepts I present for 

your fellow learners.   

2.1 INTRODUCING TABLE SCHEMAS 

 

As I've said before, the main organizing concept of relational database 

management systems is a table. Relational database theory has a formal concept 

called a "relation." A table implements a relation, and that's how we get the name 

relational database management system. A table has rows and columns. You might 

think of this as similar to, say, a spreadsheet. However, a table always has a strict 

set of columns, and then any number of rows. Look at this toy table. This table is 

set up to have just the columns id, name, and price. A row (or record) in this table 

will have exactly these three data elements: an id, a name, and a price. A row 

cannot have any extra data elements besides these three. But the table has no set 

restriction on the number of rows. Here you see 3 rows, but there can be no rows, 



or a thousand rows, or a million rows or more! (If anyone can think of a million 

different toys to record in the table.) Look a little closer at this table, at the kinds 

of data you see in each column. The id column has whole numbers. The name 

column has words, and the price column has money amounts with units in 

hundredths. (Maybe dollars and cents, or maybe some other kind of money: there 

is no indication of what monetary unit it is.) The table is made so that each column 

has a declared data type, which determines what kind of data can go into that 

column. So then any row is just a combination of legal values for each of the 

columns in the table. Look now at the declared data types for these three columns. 

The INT data type says that the id column can only store an integer. (The allowed 

range is around plus or minus 2 billion, but let's not worry about that right now.) 

The name column has data type STRING, which is a simple data type for character 

data. Any character, including numbers and other symbols, can be part of a string. 

The price column has a different kind of numeric value: a decimal number, with up 

to 5 digits total, and with 2 of those digits to the right of the decimal place. So, a 

DECIMAL(5,2) column can have a value as high as 999.99, but no higher. A DECIMAL 

data type like this is good for money amounts, because it will always stay accurate 

to the exact number of decimal places you give in the data type. A really important 

idea to get here is that the table has no set limit on the number of rows it can have, 

but has definite limits and rules on what can go in any row. The table has a strict 

definition for its column names and their data types, and this comprises the 

structure of the data your table can accept. So, you can just sketch out the design 

of the table by stating the column names and their data types. See how this 

describes the table? This doesn't show any of the data, the actual toy records, that 

can be in the table. But it shows the kinds of rows or records that the table will 

accept. This is the structure of the table, also called its "schema" or "metadata."   

 

2.2 NULL VALUES 

 

Table columns each have a name and a data type, but they can also have other 

properties. Here's one more column property for now: NOT NULL. Sometimes a 

row can have no value at all for one or more of its fields, which are the values for 

the different columns. The special term for no value is NULL, or a NULL value. Note 

that NULL is not the same as zero for numbers. And for STRING columns, it's not 

even the same as an empty string, a string with no characters. NULL is the absence 

of any value at all. So then another property of a column is that it can be NOT NULL. 



This means that a row must have a value supplied for that column, or it is not a 

legal row. Look at this revised schema. Now there are notes that the id column and 

the name column are both NOT NULL columns. So, a row in a table must always 

have a value for id and a value for name. But this note does not appear for the price 

column, a row may occur with no value given at all for the price. Look at the table 

schema and the data given here. The values in every row conform to the data types 

of their respective columns, and the NOT NULL columns have values in all the rows, 

so all the rows are legal according to the table schema. Notice here that the word 

"NULL" is presented for the price in one of the rows. Many of the database systems 

will have some way to indicate a NULL value in a row whenever the row is printed 

out, and the printed word NULL is one common way.  

This first course emphasizes concepts, and so the syntax for INSERTing rows comes 

up in a later course. However, I can tell you that there are two common ways to 

indicate a NULL value for part of a row: one is to leave the value out of the row 

INSERTed, like so. This is not SQL syntax: I'm just giving the data for a row presented 

clearly. Since no value is given for price, the row must use a default value. In some 

systems, there could be a default for columns whose values are not supplied on an 

INSERT. If no value was specified in the table schema, the missing value must be 

NULL. The other way to supply a NULL value is to use the word NULL explicitly in 

the row values. It's important to get to know the schema of any table, because that 

tells you what kind of data can be in the table. And so, what kind of information 

you can expect to store and retrieve. There's more to say about data types and I'll 

continue with that in the next video.  

2.3 DATA TYPES 

 

We've looked briefly at a small table and its simple schema. Every bit of data in a 

relational database is a row in a table, and so the data permitted in your database 

will be determined by the table schemas you define using CREATE statements. 

Since your table schemas must always provide a data type for every column, the 

data types determine what kinds of data you can have. If you study the dialect of 

SQL used by any system, you'll find a list of supported data types. For example 

Apache Impala includes these data types: There's no need to learn each of these 

data types right now, the later courses will include these in a detailed study. For 

now, it's important to note two things. One, a relational database design always 

gives a data type for each column in a table. And two, different SQL dialects, for 

different software systems, will have some differences in the exact list of data types 



supported. So if you actively use a particular system, you want to familiarize 

yourself with its available data types. In fact, if you copy data from one system to 

another, you may need to adapt some columns from the data types in the one 

system, to use the data types available in the new system. There are two special 

column data types that I want to mention briefly here: BLOBs and CLOBs. "BLOB" 

stands for Binary Large Object, and "CLOB" stands for Character Large Object. Look 

at the maximum allowed sizes. That's right: a table might have a BLOB column that 

stores, say, an entire movie in each row, or a digital x-ray. Or, a CLOB column might 

store the entire text of a book in each row. These large data types are very unusual, 

because many SQL dialects do not support them at all, and those that do usually 

have very limited support. There's typically no built-in way to use these columns in 

any analysis.  

With standard SQL dialects, you cannot sort, or search, or calculate anything with 

the values in these large data types, and so these columns cannot be used in the 

kinds of SQL commands that do those things. At most, such column values can be 

stored in a table, and then retrieved from the table. In fact, database systems that 

do support BLOBs and CLOBs usually store them in a part of the file system that is 

altogether separate from the storage of all the other columns of a table. Again, 

these large data types are supported in some RDBMSs, like Oracle, but are not 

supported universally. For instance, Impala does not have BLOB or CLOB in its list 

of allowed data types. Also, the size limits of a BLOB or CLOB may be different in 

different systems. There's one more general category of data type: complex data 

types. Those are unusual data types in the conventional relational world, but they 

add flexibility in your table designs for big data. I'll discuss complex data types later 

in the course.  

2.4 PRIMARY KEYS 

 

There are a few other column properties that you can set, depending on the 

particular RDBMS you use. Here are a couple of those other properties: a column 

definition may define a default value for the column, or a numeric column may 

allow only positive values. It's good to learn the complete list of available column 

properties for whatever system you use, but I'm going to skip those to get to the 

next important concept. Here are two key properties that take you from columns 

further into overall table design: primary keys and foreign keys. "Two key 

properties" - get it? These properties are not required by all RDBMS software, but 

they are frequently supported, and they enable a well-known approach to database 



design that I'll discuss this week. A "primary key" is a column - or sometimes a set 

of columns - that is used definitely, uniquely to identify any row in a table. I'll talk 

about single-column primary keys, called simple primary keys, for now. If a table 

has a primary key column, then for any row, the value of the column in that row 

identifies exactly that row, and no other row in the table. An RDBMS supports a 

primary key by making the column NOT NULL, and also unique. This means that if 

any record is submitted for INSERT to the table, the primary key must be included 

as a non-NULL value. And also, the database system will check all rows in the table 

at the time of the INSERT, and will reject the new row if its primary key value is 

found to be already present in the table. In this way, the primary key prevents the 

table from ever having two rows that are exact duplicates of one another, because 

no two rows can have the same primary key.  

Look at this table: The RDBMS does not require you to have a primary key but the 

id column may well be the primary key for this table. Here the numbers in the 

column cover a sequential range of integers. That may not be the case, and it 

doesn't matter. The important thing is that there can be no two rows with the same 

value in the id column. So, a primary key value will always locate exactly one row 

in the table - or no row if the primary key value isn't found. When you design a 

table, you may find more than one column that could be used as the primary key, 

but just be aware that RDBMSs usually permit no more than one primary key, so 

the schema for your table will have no primary key, or one primary key, not more 

than one. Columns with "id" in the name are often used for primary keys. Employee 

id, customer id, store id: these can be used to identify exactly one employee, or 

one customer, or one store.  

Another aspect of a primary key is that it must never be changed. For example, you 

can keep an employee table up-to-date by changing the name, or the salary, or the 

department of an employee, but the primary key - say, the employee id - never 

changes, and in this way the other changes reflect a change in the data about the 

employee, but not a change from one employee to another. This rule of no changes 

allowed, or "immutability," for primary keys is often not enforced by RDBMS 

software, but it nevertheless is an important principle for you to follow when you 

think about table design. Systems use different ways to represent a primary key in 

a table schema, but here's one: The note "PK" indicates that the id column is a 

primary key. PK automatically implies that a column is also NOT NULL and must 

have no duplicates in the table, so indicating these is optional. This design tells you 

that the table will always have a value for id in every row, and that no two rows will 



ever have the same id. Of course different rows may have the same price. As for 

the name column, it may or may not make sense for you to have two rows with the 

same toy name, but this table design does not say anything about that: it only 

restricts the use of duplicates in the id column. I'll talk about foreign keys, and a bit 

more about primary keys, in the next video.  

2.5 FOREIGN KEYS 

 

When a table has a "foreign key," it means that a column refers to some other 

"primary key." Look at these two tables. Now the toy table has a new column, 

maker_id. Looking at the data, I hope you can guess that the maker_id column 

refers to the id column in the maker table. You can read the two tables together to 

see the name and city of the maker of each toy. When you have multiple tables, 

you can always single out a specific column by writing its table name, then a period, 

then the column name. Since both tables have a column named id, you can use 

their long names, toy.id, and maker.id to be clear. You can always use these longer 

names if you like, not just when it would be unclear. So here the maker table has 

primary key maker.id, and the toy table has foreign key toy.maker_id, which refers 

to maker.id.  

The design of the two tables can be presented like this. The note for the maker_id 

column of the toy table states that this column is a foreign key, and that it refers to 

the id column in the maker table. Or in other words toy.maker_id refers to 

maker.id. Foreign key columns are always NOT NULL, and what this foreign key 

property means is that any value in the maker_id column of the toy table *must* 

appear in the id column of the maker table. Whenever you attempt to INSERT a 

row in the toy table, the value you supply for the maker_id is checked against the 

maker table, and your row will be accepted *only* if the value is found. So, by this 

design, your system implements a rule: every toy in the database must have a 

maker in the database.  

In the last video I said that a primary key uniquely identifies a row in a table, and 

that it can be a single column or a "set of columns." Here's an example of a multiple-

column key, called a "compound primary key." The unique identifier of a row in the 

shoe_at_store table is not one column, but the combination of shoe_id and 

store_id. These two columns together comprise a "compound key." They are both 

NOT NULL columns, and the combination of the two must always be unique for 

each row in the table. Notice that each column of this compound key is itself a 



foreign key: the columns refer to the primary keys in the other two tables. You can 

see that the price column of the shoe_at_store table tells you not the generic price 

of a shoe, but the price of a shoe at a particular store. Looking at all three tables, 

you can see that the Women's Classic Ugg boot sells for one price at Boot Place and 

another price at Bear Foot. The shoe and store tables have designs similar to the 

ones you've seen before: The design of the shoe_at_store table has a compound 

primary key, containing two foreign keys.  

Remember, I said in the last video the table can have at most one primary key. So 

the note PK for the shoe_id and the store_id columns tells you that these form a 

compound primary key. They are both NOT NULL and the combination of shoe_id 

and store_id values must always be unique in the table. The overall design across 

these three tables might be visualized like this. This gives you a big picture look, 

above your table designs, to your overall database design. You can see at a glance 

that the shoe_at_store table uses a compound key to represent the combination 

of shoes and stores in your data. You can expect to find data about shoes at a store, 

like the price or available inventory, or you can go to the shoe table to find out 

more about a particular shoe style, or go to the store table to find out about store 

details.  

A SELECT statement that uses these tables in combination is called a JOIN query, 

and you'll see in the next course how easy SQL makes it for you to write JOINs and 

work with these table combinations. This use of compound keys to place a table 

"between" other tables is easy to do. It's not always the best way to set up your 

database, but it can sometimes be suitable, giving you a clear organization and 

predictable ways to find information. Here's an illustration of another example. I'm 

not going to discuss this database in detail here, but I think you can see what it 

represents, and this kind of design is called, nicely enough, a star schema.  

 

2.6 TWO STRATEGIES FOR DATABASE DESIGN 

 

In order to store data in a relational database system, you or someone else must 

first create the tables that will store your data. So, your choices about your tables 

provide the organization you will have for your database. I've given you all the basic 

building blocks you can use to create your tables: columns, with data types and 

other column properties, and primary keys and foreign keys. I've skimmed over a 



few other column properties, like default values in case you don't supply a column 

value when you INSERT a row. However, I have explained the basic parts of table 

design. With these basic building blocks, you have a lot of flexibility in how you 

design the tables for your database. Look at this small database. We saw before 

that these tables have a design with primary keys, and the toy.maker_id column is 

set as a foreign key referencing the maker.id column. Look at this alternative table.  

The RDBMS does not require you to have a primary key on a table, so this is a 

possible way to store the data. But you have to wonder, what is this table really 

about? If it's about toys, then what is the meaning of the row with the maker but 

no toy? Just looking at this table, can you guess that the key is about the 

headquarters location of a maker? If you delete one toy row from the table, don't 

you risk deleting the maker at the same time, whether you want to or not? What 

about this design? This time you have a single table that emphasizes makers. It's 

interesting, though, that the toys column combines the toy name, a string, with the 

price, a money value, and there are two of these in one row.  

Of course, as more data gets added, you'd probably have one maker that makes 

dozens or even hundreds of different toys, so that this column alone could become 

quite large on some rows. SQL provides the simple CREATE statement to create a 

table, ALTER to change some properties of the table, and DROP to discard a table. 

These DDL statements are so easy to use that you can create a handful of tables in 

a minute or two. This is great for practice and learning, and may work well enough 

for a small database, but beware! If you create a database that will get larger and 

will see production use, you will likely have troubles that you can avoid if you start 

instead with a conscious approach to your database design. With all the freedom 

in how you set up your tables, it can help if you understand two general strategies 

of database design. One strategy of design is database normalization and the other 

is database denormalization. In the next videos, I'll talk about normalization, 

denormalization, the differences, and the trade-offs between these two strategies.   

 

2.7 DATABASE NORMALIZATION 

 

Database normalization is a strategy whereby you design each table so that it obeys 

certain organizational conditions or rules. The rules build to more and more strict 

forms of table organization, and are sequenced as First Normal Form, Second 

Normal Form, Third Normal Form, and so on. There are some even more strictly 



organized designs called Fourth, Fifth, and Sixth Normal Forms and a few other 

forms in between, but the business community generally accepts Third Normal 

Form as the level of organization to aim for when you adopt a strategy of database 

normalization in your design. Let me give you an informal list of the conditions that 

meet Third Normal Form. This list is not numbered in relation to First, Second, or 

Third Normal Forms; it is a summary of Third Normal Form in its entirety. I'll discuss 

each of these conditions in turn. First, every table should have a primary key. I'll 

add that you should think about the primary key carefully. Look at this table. This 

table is improved with a primary key, which is part of Third Normal Form. Now you 

can have two customers with the same name, and still identify them as distinct 

from one another.  

The primary key can be used as a foreign key in other tables to refer to a customer. 

The customer can change names, and it's clear: this does not change customers, it 

changes something about a customer - the name - but with the identity of that 

customer remaining unchanged. A common practice is to avoid using "intelligent 

keys" - that is, use a primary key that identifies a row, but does not have any 

meaning about the item represented in that row. This principle is not required to 

put a table into Third Normal Form, but it is usually good practice. The second "rule" 

or condition is that every column should be atomic, or indivisible into smaller parts. 

This doesn't really mean that you can never have a column with parts, but you 

should never have parts that appear separately somewhere else in the database. 

Look at this table.  

Here the city and state code appear together, so you might think that this is not a 

column with atomic values. Here's the real issue: Do you expect to never have or 

need a separate table with data about a state or province? If so, then you do *not* 

need to split this out from the original city column. Although it has two parts, for 

your purposes, neither part will ever need to be separated out. On the other hand, 

what if you have another table like this. Here, having another table with state or 

province codes, there is not a simple way to organize the two tables together, since 

the two-letter state codes are not clearly set apart in the maker table. This problem 

can be solved with a change to the maker table.  

Now, the maker.state_or_province column is atomic and connects directly as a 

foreign key to the state_or_providence.code column. So "atomic columns" means 

atomic for your use in your database organization. If you want your database to 

include more information about *part* of a column, then normalization strategy is 

to make that a separate column, so that it can be used as a foreign key and refer to 



another table that gives more detail. Note you may have reasons of your own for 

keeping parts of your data in separate columns. For example, you may choose to 

have a customer's first name and last name in separate columns, so that you can 

sort by last name or use the person's first name in a letter. The important thing is 

that you think about how you will use your data, and organize your database with 

your use in mind.  

The third condition of normalization is similar: a single row should not have 

multiple values for one type of data. Consider this very simple table. The items 

column has more than one element in the rows shown. When you have this one-

to-many collection of data elements on one row, it is called a "repeating group," 

and this table design can create some difficulties. For instance, it makes it difficult 

to answer questions about whether a certain item is in the shopping list, or how 

many shopping items there are in total. This only gets worse if you have 30 items 

on some rows, or 200! To avoid repeating groups, break your column into multiple 

items into a separate table, like this.  

Now there is one item per row in the shopping_item table, and one store per row 

in the shopping table, so there are no repeating groups. This kind of two-table 

design is common: orders and line items, recipes and ingredients, companies and 

departments, and so on. The next condition says that non-key columns should 

represent only information about the primary key, and not other non-key columns. 

Consider this example. This is a table about toys, and the id column is its primary 

key. It's clear that the name, price, and maker columns give facts about a toy. 

However, the city column is not really about a toy, but about the maker of a toy.  

You've already seen a design with a more normalized approach: have a separate 

maker table, with city as a non-key column describing the location of the maker. 

Finally, Third Normal Form maintains there should be no derived columns. Look at 

this data. The total column is calculated as the amount, reduced by the discount 

percentage. Third Normal Form identifies the total column as redundant, since it 

can be derived from the other two columns, and so a normalized design removes 

this column from the table. The idea is that with the derived column present, if any 

of the three values - for amount, discount_pct, or total - is changed, this will 

introduce an inconsistency in the data - and the design gives you no way to prevent 

or resolve the inconsistency. There are more rigorous definitions of Third Normal 

Form, but just know that I've given you a reasonable definition in plain language: a 

table in Third Normal Form has a primary key; all columns are atomic and with no 



repeating groups; non-primary-key columns give facts only about the primary key, 

and there are no derived columns.  

2.8 DENORMALIZATION 

 If you guessed that "denormalization" is the opposite approach to database design  

as "normalization," you're not too far off, but there is a little bit more to learn. The 

strategy of denormalization is to consciously, deliberately "break" one or more of 

the rules  of database normalization in your design. Of course, these rules are not 

actual laws  that you are compelled to obey - they are just principles of one 

approach. You will find advantages and disadvantages to either design approach - 

normalization or  denormalization - and I'll discuss some of the differences  and 

trade-offs between these two approaches in the videos after this one. For now, I 

want to illustrate some examples  of denormalized table designs.  

Consider this table of shopping items. Here the primary key is the combination  of 

date and item. You need both to identify a row uniquely. But what if you have these 

shopping items in a table, but you don't have any date information? Your table may 

look like this. You can see that there are two rows  with the same item and the 

same quantity. So, there are duplicate rows and  there is no primary key. Although 

this is not a normalized table, it may store information that you find useful: every 

time an item of shopping occurs, the table records that event. So this table records 

two occasions  of the purchase of apples in the same quantity, and the "duplicate 

rows" are not  really duplicates for your use. Another form of denormalization is  to 

"pre-join" normalized table data.  

Sometimes storing data in a denormalized  pre-joined table improves performance, 

because it saves some queries the work  of querying more than one table. 

Remember this normalized set of tables. These tables are in Third Normal Form. 

They provide details about individual shoe types, and stores, and the prices of  

particular shoes that particular stores. When I talked about foreign keys before, I 

noted that an SQL SELECT statement  that combines information from related 

tables is called a JOIN query. This is because the SELECT includes information about 

how the tables combine, or join to one another. Here's a single denormalized table 

that pre-joins the tables. Now a query on this new table does not need to include 

any JOIN to find all the information  that was previously stored in three tables. Such 

a query may be faster because it doesn't have to do the work  of combining 

different tables. Another form of denormalization is  to store a "derived column" in 

a table. Look at this table. Here, the "total" column contains  the sum of amount 



and shipping, though it is derived from the other two columns. Sometimes derived 

columns are added  to make their data quickly available.  

Another kind of redundancy of storage is to have a table composed entirely of 

summary data, like this one, assuming that there is a separate table about 

customers,  and a table with individual orders. Like the derived column, this 

summary table can let queries  retrieve these count and total values quickly, 

without having to calculate them  from the other more detailed table. Now I've 

given you four examples  of denormalized table designs. These have been examples 

of denormalization, not an attempt at a complete list. Note that some writers argue 

that a summary table does not literally violate  Third Normal Form. Nevertheless, I 

think I'm justified  in putting the use of summary tables with the others in discussing 

an approach  to normalization or denormalization.  

It is a commonplace notion among  experienced database designers that, if you 

throw together a few tables without  regards to the principles of normalization, 

then you do *not* have a denormalized  database design: you have a mess. This is 

sometimes called a "non-normalized" design. A disciplined approach to 

denormalization is to start by defining a normalized set of tables, considering the 

principles of  good keys and column properties, and then deliberately relaxing your  

normalized design for specific reasons. This practice can help you better 

understand your data. I've used these last two videos to explain  database 

normalization and denormalization. In the next two videos, I'll talk about the 

differences and trade-offs  between these two design approaches.  

2.9 DIFFERENCES 

 

Both normalized and denormalized database designs have their uses. In this video, 

I'll discuss some of the main differences between the two design approaches. First, 

I'll consider data anomalies or problems with keeping the data well organized. 

When E.F. Codd first formulated his original principles of normalization, he made it 

clear that he was trying to help reduce the occurrence of anomalies. Consider the 

two table designs here. The denormalized design is subject to possible INSERT, 

UPDATE and DELETE anomalies. Here's an INSERT anomaly. If the person.name 

column is the primary key and therefore NOT NULL then you cannot add a city 

without also adding a person at the same time. Here's an UPDATE anomaly. If you 

change the spelling of San Francisco to "SF", you will generate inconsistencies in 

the table. Unless you search the table and make sure to update all occurrences. 



Here's a DELETE anomaly. If you delete the row for name "Sara" from the table, you 

will also delete the city Winnipeg, whether you intend to or not. The normalized 

tables are not subject to any of these problems. Of course, you can still have 

problems with your database - that's life - but the normalized design does avoid 

some problems like the ones I've just illustrated.  

Next, notice that a normalized database automatically enforces certain rules in the 

allowable data in your database. Look at these simple tables. The id columns are 

the primary keys in the two tables and the toy.maker_id column is a foreign key 

that references the maker.id column. When you define a primary key it is often 

called a primary key constraint. And a foreign key definition is a foreign key 

constraint. These are indeed constraints or restriction on the data in your tables. A 

primary key requires that no two rows in the table can be duplicates because every 

value of the primary key must be unique in the table.  

The intention is that a row represents an individual entity and that entity cannot 

occur more than once in the table. So, for instance, if you find a row about a maker 

in the maker table, the primary key assures you that you have found the one row. 

And you do not need to continue looking for other rows. (That is assuming that 

your primary key design is wisely done, then you take care not to assign more than 

one primary key to the same maker.) A denormalized table without  a primary key 

has no such constraint. There could be multiple rows  about the same maker with 

different, - maybe even conflicting - data in different rows.  

This may be easy enough to manage with a tiny table, but can cause major 

problems when the table gets larger. A foreign key constraint places other 

restrictions on your database. Because toy.maker_id is a foreign key referencing 

maker.id, the following restrictions all hold on these tables. Whenever you add a 

row for a toy,  it must have a maker that is  in the maker table. If you ever change 

the maker for a toy, it must be to a maker in the maker table. You cannot delete a 

row from the maker table that would leave toys without a maker. An RDBMS can 

enforce these primary key and foreign key constraints. So that any DML statement 

that violates a constraint will not succeed in updating your data  and will return an 

error instead. You can then build your operational programs to always maintain 

data in your database system. And so the response from the system, on any 

attempts at DML, can be used as guidance to implement certain rules in your 

business processes. In this case, for instance, the database enforces rules such as, 

"you cannot have a toy without a maker." Foreign key constraints can be used to 

enforce many rules. Like, "you cannot have a customer without an account rep"; 



"You cannot have an order without a customer"; "You cannot have an employee 

without a department"; and so on. A denormalized design without foreign key 

constraints, will not implement any of these rules in the database. Another 

difference is in the size of your data store. You have probably noticed by now that  

one general principle implied in the rules of normalization is, "don't record anything 

in more than one place." Look at these two designs. The storage footprint is over 

25 percent  larger in the denormalized table because of the repetition of the  city 

name and state or province  in each row. For such a tiny table that may not seem 

like much. But you can imagine that the difference in size becomes more extreme 

as you add more rows to the person table with more and more redundant storage 

of city data.  

2.10 TRADE OFFS 

 

So far you've seen three main differences between normalized and denormalized 

design approaches. Normalization prevents some data anomalies, enforces some 

business rules, and produces a smaller database size than a denormalized 

database. All these differences seem to suggest  that normalization is a better way 

to go, and it often is, for these very reasons. A primary benefit for denormalization, 

on the other hand, is that it can improve the speed of your system - especially the 

speed of some SELECT statements. Look at this table with a derived column, 

showing the total of amount  and shipping. The normalized form of this table would 

not have this column, and so would not risk inconsistency  between the total and 

the other two columns.  

Denormalization stores the total explicitly, which makes it quick for a SELECT 

statement to sort, search, and report the order total value  from the table. This 

example is trivial, and SQL can do all those things  without needing the derived 

column, but the computation of adding two columns does take some non-zero 

amount of time. If the function to compute a value for the row becomes more 

complex, it will take more time, and with more rows in the table, even more time 

to run a SELECT statement. When you denormalize and store a derived column in a 

table, you take on the extra work to store it correctly in your rows, in order to make 

the value quickly and readily available for SELECT queries. Look at this summary 

table from before. In two rows, this table condenses data from 83 rows of the 

customer_orders table, 45 rows for one customer and 38 rows for the other 

customer. This table does not contain all the details of the other table, but it makes 

a SELECT statement for these summary statistics much faster. Regarding SELECT 



speed, look at these two table designs. Consider this simple question:  What is the 

state for the person named Kiko?  

A SELECT in the normalized database requires a JOIN of two tables, while the 

denormalized database allows a simple lookup on one table. So, the redundant 

storage of the city data,  and the effort to keep these extra elements up to date, is 

a trade-off  to save the time it takes to perform a JOIN to find those elements  when 

you issue a SELECT statement. A thoroughly normalized database  may require you 

to join many tables in order to gather all the details you want to find. So for more 

involved databases  and larger tables, you'll find significant differences  in the run 

time of queries against normalized, or pre-joined tables. Remember that analytic 

databases are primarily built for data analysis. Analytic queries perform summaries 

and other deep dives into your data, to uncover insights that are implicit in the data 

as a whole. Because data analysis leans toward queries of greater complexity across 

more parts of your data, analytic databases tend to perform better with more 

denormalized designs. Operational systems, with their ongoing mix of DML and 

lookup queries, often work better with normalized designs. These are not hard 

rules, but they are tendencies you'll see  in good design for the two types of 

databases.  

2.11 LET THERE BE THIRD NORMAL FORM 

 

When you discuss database normalization with an experienced colleague, they may 

smile and use the phrase "the key, the whole key, and nothing but the key, so help 

me Codd." (The "Codd" in the last, optional part of the phrase refers to E.F. Codd, 

who first proposed the fundamental concepts of relational data, including 

normalization.) This is a humorous wordplay on the commonly known language in 

which an individual in a United States court of law swears to tell "the truth, the 

whole truth, and nothing but the truth, so help me God."   

This phrase comes close to completely covering the details of Third Normal Form 

(or 3NF). The detail not included is, for a relation (or table) to be in first normal 

form (1NF) or higher, every record must have the same number of fields—and this 

includes the constraint that a column cannot have multiple values. 

The phrase originated with William Kent, who wrote that "a non-key field must 

provide a fact about the key, [use] the whole key, and nothing but the key." His 

article, "A Simple Guide to Five Normal Forms in Relational Database Theory," gives 



a good, simple explanation of normalization, with references to the authoritative 

works on the subject. 

 

2.12 DATABASE TRANSACTIONS 

 

Up until now I've avoided discussing a major feature of some - but not all - relational 

database management systems: database transactions. When I presented nine 

statements in SQL - SELECT, INSERT, UPDATE, DELETE, CREATE, ALTER, DROP, 

GRANT, REVOKE - I pointed out that this was not a complete list of all the 

statements in SQL. Remember, the DML category has three statements: INSERT, 

UPDATE, DELETE.  

For a system that support transactions, I will add three more fundamental 

statements to the DML category: START TRANSACTION, COMMIT, and ROLLBACK. 

A database transaction allows you to bundle multiple DML statements into one 

indivisible action in the database. Consider this example: Suppose customer 860 

wants to transfer 100 units of money from their savings account to their checking 

account. I'm not going to present complete SQL syntax here, but I will say that this 

transfer requires two separate UPDATE statements. One: subtract 100 from 

savings. And Two: add 100 to checking. The problem is this: What if the program 

that initiates this transfer fails midway through the process?  

There is a big problem if the first action - the subtraction from savings - completes, 

but the second action - the addition to checking - does not happen before the 

program fails. Then funds simply disappear for this customer, only because of a 

computer glitch! This is unacceptable in any production database system. The 

solution to this problem is to combine multiple DML statements together into a 

single atomic operation: a transaction. This list gives the gist of four SQL 

statements, which together form one transaction. Statement 1, begins a new 

transaction with the database. Statements 2 and 3, the two UPDATE statements 

are carried out on a "pending" basis. The COMMIT statement at the end causes the 

pending changes of the two UPDATEs to become permanent *at the same time.* 

So, this sequence of statements acts as one atomic action that makes two changes 

in the database. Up until the time that the COMMIT statement completes, none of 

the data changes in the transaction is permanent. The program issuing these 

statements could fail for some reason - like a power outage. If this occurs, then the 



database will automatically ROLL BACK, or undo, the pending updates, and the 

tables will be left in the same state they were in before that transaction began. If 

the program issuing the DML statements needs to, it can issue a ROLLBACK 

command explicitly, and this will order the database to discard any DML changes 

that the program has issued, and that are still pending. In other words, a START 

TRANSACTION command establishes a starting point in the database state.  

Then a number of INSERT, UPDATE, and DELETE statements can be issued, and 

these are all kept on a pending basis in the database. Finally, a COMMIT will make 

all these changes permanent at one time, or a ROLLBACK will discard all the pending 

changes since the START TRANSACTION. A failure of the program issuing 

commands, or a failure of the program's connection to the database, or even a 

power outage in the database, will result in an automatic database ROLLBACK to 

the state before the transaction.  

So, the bundling of multiple DML statements into one transaction allows programs 

to take the database from one consistent state, to another consistent state, 

without the risk of leaving the system in some inconsistent intermediate state 

should anything go wrong midway. If you use these transactional commands, it's 

up to you to make sure that the combination of DML statements you use in one 

transaction should be reasonable in taking your database from an initial correct 

state to another correct state.  

So, don't take money from savings, then COMMIT and then put money into 

checking, then COMMIT again! That would defeat the purpose of having 

transactional capability in your database! Not all RDBMSs support transactions, but 

those that do will usually allow a generous number of separate DML statements to 

be bundled together in one transaction. So, for example, you could have a single 

transaction that inserts an order row, plus a set of line item rows for that order; 

then deducts funds from a customer deposit; then adds a bill for remaining funds 

due; and then alters the customer's credit rating in your system - all in one 

transaction.  

2.13 ACID 

 

Many database users characterize  the expected capabilities of a transactional 

RDBMS by saying  that it is "ACID compliant," or informally, that the database  "has 

ACID capabilities" or even  "does ACID." The term ACID refers to guarantees  that, 



combined, give users confidence that they can use the RDBMS for particular kinds 

of applications  without worries. ACID stands for: Atomicity, Consistency, Isolation, 

and Durability. That's the noun form of those four words. Another way of saying it 

is to say  an ACID-compliant transaction is atomic, consistent, isolated, and durable. 

Personally, I find the second set of words  easier to say, but you can always impress 

your  friends and family by using the longer noun forms in a sentence. The 

important thing is that if you need  a transactional database application - and I'll 

talk more about those - then you probably want to get these guarantees  from your 

DBMS.  

I'll explain these guarantees: A transaction is "atomic" if it is indivisible, meaning 

that all the DML operations  in one transaction are guaranteed to be made effective  

in the database at one time. So, a transactional system provides  an atomic 

COMMIT, exactly as I described in the last video. "Consistency" is closely related to 

atomicity, with an emphasis on respecting the constraints  in your database design. 

A transaction is "consistent" if it keeps the database in agreement with  the 

database design constraints.  

Or in other words, the transaction must never be allowed to leave the database in 

a state  violating its constraints. For example, look at this pair of tables. Now 

consider this attempted transaction: The DELETE at line 3 would create a broken  

foreign key in the row added at line 2. In order to maintain the database  constraints 

consistently, an ACID-compliant system will disobey these commands and  roll back 

the entire transaction. It is true that the system "could"  allow statement 2, and 

then refuse statement 3, but this would break the notion that these statements 

together comprise a transaction. A consistent transaction, in its entirety, takes the 

database from one consistent state  to a new consistent state. Transactions are 

"isolated" if different  transactions running concurrently in different sessions do 

not interact with one another in their interim changes  to the database. Isolation 

can have different aspects, but the fundamental form is  further guarantee of 

atomicity.  

Multiple transactions currently running  in a database are all pending. Then, when 

one transaction commits, all its changes occur in one action. When a different 

transaction COMMITs, all its changes take effect. So, even though the statements 

in different  transactions may be interleaved in time, the system handles them as if 

they were  instead performed in a series. The ordering of different transactions  is 

determined by the time of their COMMITs. An ACID-compliant system has an 

internal engineering necessary to keep these interleaved activities  well organized. 



Finally, there's "durability," and this is  an important feature for a database. A 

transaction is considered "durable" if, when the COMMIT statement completes  

successfully in your program, the database guarantees that  your data changes are 

"persistent," or safely stored  in the database.  

This usually means that your changes  have been stored on disk or flash memory, 

so that even a power failure  of the DBMS will not lose your data. With a guarantee 

of a durable COMMIT, your programs can safely clear all memory  of the data that 

they've put into the database, as a database system enables retrieval of that data  

whenever it's needed again later. ACID-compliant transactions are  supported by 

many popular RDBMSs, like Oracle, SQL Server, PostgreSQL  and MySQL. As the 

course progresses, you will learn about the growing  variety of DBMSs that address 

needs other than those  served by transactional systems.  

Nevertheless, you can usually find  details about one or more of these guarantees, 

even for systems  that are not fully ACID-compliant. In particular, you want to pay 

attention to  what actions can be made atomic, and when your DML changes are 

durable. The way your DBMS handles these features will affect the way you want 

to write  your programs that use the database, since you know that atomic 

operations  will never be done "part way," and that durable retention of data  in 

the database allows your program to safely "forget" the data  without it being lost.  

2.14 SELECT STATEMENTS IN TRANSACTIONS 

 

In the categories of different SQL statements, the SELECT statement can be 

classified in its own separate category of data query language, or DQL. 

Alternatively, some people group the SELECT command together with INSERT, 

UPDATE, and DELETE in the data manipulation language, or DML category. It is true 

that SQL provides a seamless combination of all the different kinds of statements, 

but there is an important way that SELECT statements interact with DML 

statements: in transactions.  

Transactions let you combine multiple INSERT, UPDATE, and DELETE statements in 

a single atomic action. You can also have a SELECT statement participating in and 

informing a transaction. For example, a transaction can UPDATE a row, then run a 

SELECT to check the resulting provisional state of the database, then COMMIT or 

ROLLBACK depending on the result of the SELECT. The pending database change 

provided in the UPDATE—while isolated from other user sessions—is reported to 



your own transaction. This ability to see changes in the database while they are still 

pending is one way that SELECT statements may be considered part of DML. 

The emphasis here is that ACID-compliant systems let you combine SELECT with 

INSERT, UPDATE, and DELETE statements in a transaction. A number of the 

features in relational systems depend upon this combination of statements for 

their implementation. 

 

2.15 ENFORCING BUSINESS RULES: CONSTRAINTS AND TRIGGERS 

 

By now you've seen a number of ways that relational database systems define and 

maintain the organization of data. All these aspects of your design have direct 

influence on the forms of data that your database can store. Actually, you can 

regard a well-thought-out design as a way to enforce business rules in your overall 

computing system. For an operational database design, a frequent approach is to 

use the database system as the single, central source of truth among different 

programs. Then any DML statement can be treated as not just a way to store data, 

but also as a way to validate processes.  

So, for example, an INSERT that attempts to add a row with a NOT NULL column 

missing, or a foreign key value that is not found in the related table, will fail. The 

application attempting the INSERT can then surface the error to the actual activity 

being represented. With this kind of coordination between the database system 

and the rest of your applications, you have a powerful method for enforcing 

business rules. So, your database not only helps keep the data in order; it helps 

keep your business processes in order as well. "Database triggers" provide a way 

to add even more constraint to your database organization. Not all RDBMSs 

support triggers, but for those that do, triggers give you a richly expressive way to 

enforce many more business rules.  

Triggers are activities that you create and store in your database, and that 

automatically occur as part of DML statements. An individual trigger is an activity 

that occurs whenever you issue an INSERT, an UPDATE, or DELETE statement on a 

particular table. The trigger can optionally return an error status, and that will 

cause the triggering DML statement to fail. For example, you can write a trigger 

that runs whenever there is an UPDATE on a record in a checking account table 

reflecting a withdrawal of funds. The trigger can perform queries to see if the 



current balance, plus the overdraw limit of the account, is sufficient to cover the 

withdrawal. If the amount of the withdrawal is over the limit, the trigger can return 

an error, and the triggering UPDATE itself will fail with an error, preventing the 

withdrawal from succeeding.  

The ability of a trigger to check all kinds of conditions in the database and then 

refuse DML statements that fail to meet those conditions gives operational 

databases an expressive, powerful way to enforce all kinds of business rules at the 

database level. Enforcing business rules at the database level has the advantage 

that multiple programs that use the database do not need to keep repeating the 

same logic - - indeed, all programs must obey the rules embedded in the database 

they use. It stands to reason that you can add triggers to a database with a CREATE 

TRIGGER statement, in a category of DDL data definition. When you add triggers to 

a table, you are indeed doing data definition: you are defining further the kinds of 

data that your database will accept.  

Aside from adding complex constraints to a table, another activity you can perform 

with a trigger is "cascading DML," in which a DML statement on one table causes 

other DML statements to occur along with that statement. For example, suppose 

you have a normalized order table, with a related line_item table. The individual 

items in the order are recorded in the line_item table, with the order_id as a foreign 

key in the line_item row. With these normalized tables, if you want to delete an 

order you must first delete all of its line items; then you can delete the order - - 

otherwise, the delete of the order would violate the foreign key constraint that 

"you cannot have a line item that is not part of an order." You can write a trigger, 

attached to the DELETE action of the order table, that will also delete all the related 

rows in the line_item table.  

So, then if you delete an order, the trigger will automatically delete the line items 

along with the order. This can make good sense in your table design, on the 

judgment that a line item has no reason to exist except as part of an order. Another 

example of cascading DML is the ongoing maintenance of a summary table: 

whenever you INSERT a customer order, a trigger can automatically update a row 

in an order_totals table, incrementing the order count for that customer. The great 

things about triggers with cascading DML is that they can contain the DML 

statement you issue, and the additional DML performed by the trigger, in a single 

transaction, so that the database consistency is always maintained. There is 

another feature usually provided by systems that support triggers: these systems 

also let you write "stored procedures," and I want to mention those briefly here. A 



stored procedure is a routine, possibly with parameters, that performs some 

sequence of actions in your database, and that can be called by users and programs 

in addition to the usual SQL commands. For example, you could have a stored 

procedure for transferring funds between bank accounts, that can be invoked with 

an amount, an account to transfer from, and an account to transfer to: Then the 

procedure can perform the sequence of DML statements for the transfer. Stored 

procedures can simplify common database activities you want to perform, by 

keeping a logical sequence of steps in the database, rather than requiring different 

programs to rewrite these routines whenever they are needed. You can see that 

stored procedures provide a method to take database design even further beyond 

data alone, into areas of application programming. 

 

2.16 BUSINESS RULES AND ACID FOR ANALYTICS? 

 

I've previously distinguished between operational and analytic database systems; 

operational databases primarily track the ongoing state of a system, and analytic 

databases are meant to enable complex queries that perform a deep dive into data, 

hopefully uncovering information that was previously unseen in the data as a 

whole. There are overlaps between the two functions, but large organizations are 

likely to have separate specialized database systems to serve operational and 

analytic needs. One type of operational database is an OLTP system. "OLTP" stands 

for Online Transaction Processing.  

It shouldn't surprise you that OLTP systems rely strongly on an RDBMS's ability to 

support transactions and business rules. ACID-compliant transactions, along with 

database constraints, enable the gold standard for database support of financial 

applications. OLTP systems, and especially online financial systems, perform an 

active mix of CRUD activities, and rely on ACID-compliant transactions and the 

enforcement of business rules to maintain consistency and order in the database, 

and in business processes.  

So, high-quality OLTP systems must support good performance for many 

concurrent transactions and queries, in a healthy mix of the two. However, not all 

DBMSs support ACID-compliant transactions or business rules, and not all 

applications need them. Consider this example: a social chat system needs the 

ability to store and retrieve individual messages at high volume and high speed, but 



the individual storage actions can be extremely simple: all they need to do is to add 

individual messages to the system. In relational database terms, such systems only 

need a guarantee of single-row atomic INSERTs, without any need for multiple 

statement transactions at all.  

The simplicity of the data added means that a single, scalable program can handle 

all the INSERTs, and it is not necessary to use computing time to enforce data rules 

at the database level. I'll mention such applications again in a couple of weeks when 

I talk about NoSQL database systems. The other broad category of database system 

to consider is an analytic database. The primary purpose of an analytic system is to 

support deep, complex queries. Many analytic systems contain data harvested 

from an operational system, and this harvesting happens on a periodic basis in a 

process called "ETL" for "extract, transform, and load" activity. For example, you 

may have an operational database that retains up to 24 hours of traffic information 

for a system that supports transportation.  

On a nightly basis, an ETL program can retrieve this data from the operational 

database and load it into a separate analytic database. This extract and load step 

also often requires "transformation" because, among other things, an operational 

database tends to be normalized, and an analytic database tends to be 

denormalized. This ETL action can occur overnight, every night, until the analytic 

database has accumulated months' or even years' worth of data, which can serve 

as a rich source of deep analytic insights about changes in traffic patterns. The ETL 

phase may take place overnight, and then the analytic queries occur during the day, 

when the database state is not changing.  

The alternation between ETL and queries happen on a daily cycle, or some other 

time period, such as hourly, but there is a separation of data load and query activity, 

and this is fundamentally different from the ongoing mix of CRUD in an operational 

system. So the addition of data to the analytic system is not a series of small DML 

operations, but a bulk load of data. This means the burden of maintaining 

consistency on the data can be shifted from the database system to the ETL 

program. That lets us optimize the database for complex query performance, so it 

does not need is to support transactions at all.  

Because these specialized ETL programs do all the DML, database triggers and even 

key constraints are usually left unsupported in production analytic databases. 

Having the database double-check the work of the ETL program would only slow 

down the ETL phase. The SELECT statements that perform analytic queries do not 



engage triggers or other constraints at all, so they're not needed. The discussion 

I've presented here presents an important form of analytic database called a "data 

warehouse." A data warehouse gathers accumulated data from one data source, 

such as an operational database as I've described, or often from multiple sources. 

For example, a data warehouse can combine daily traffic data, and daily weather 

reports, and data in area population density, and changes in housing costs, to build 

a very rich set of analyses of ongoing transportation needs and transportation 

business opportunities.  

 

2.17 DATABASE INDEXES 

 

 

In a conventional RDBMS, indexes are special datasets that help to greatly improve 

performance of selected queries. Consider this illustration of a small table: 

Ro

w 

ID First 

Name 

Last 

Name 

Departme

nt 

1 96 Ada Brandt Engineerin

g 

2 30 Zehra Yavuz Sales 

3 98 Yves Laurent Sales 

4 41 Hamza Demir Accountin

g 

5 50 Sophia Petrov Sales 

6 29 Cyril Fedorov Engineerin

g 



7 22 Akari Tanaka Accountin

g 

8 83 Goro Otsuka Engineerin

g 

With such a small number of rows, you can find data from this table with ease. 

Suppose you want details for the person with ID 50, or you want to know how often 

the last name "Jones" appears in the table: you scan all the rows in the table to 

quickly answer your question. Now suppose that the table contains eight thousand 

rows: you could still answer your questions by scanning the rows, but it would take 

far too much time to view so much data. 

A database system requires time to scan rows as well, and query time is especially 

affected by the time it takes to locate and read the needed data from disk storage. 

For a computer system, the time to read eight thousand rows may be no more than 

a few seconds, but the time becomes much worse with eight million or eight billion 

rows. Database systems often allow analysts to improve query time on large tables 

by implementing database indexes. 

2.18 INDEXES AND QUERY PERFORMANCE 
 

Look at this figure, which illustrates an index on the ID column of the small table 

above: 

ID Ro

w 

22 7 

29 6 

30 2 

41 4 



50 5 

83 8 

96 1 

98 3 

Notice that the ID column is ordered, and that each record in the index shows the 

row where that ID occurs. You can use the fact of ordering to quickly locate ID 50 

in the index. This gives you row number 5, which you can then find quickly in the 

original table for details about the person with ID 50. 

An index like this would allow you to quickly find the data for any person given their 

ID, even if the table contained eight thousand rows. For a larger table, it would take 

more time to locate the ID, and then additional time to find the correct row in the 

original table, but this two-step lookup procedure—find the row number for ID 50 

in the index, then locate the table row with that row number—would take far less 

time than a scan of the whole table without any index. 

Now look at this illustration of an index on the Last Name column: 

Last 

Name 

Ro

w 

Brandt 1 

Demir 4 

Fedorov 6 

Laurent 3 

Otsuka 8 

Petrov 5 



Tanaka 7 

Yavuz 2 

With this index on Last Name, you can quickly determine that the last name Jones 

does not appear in the table at all. Without the index, you would need to scan all 

the rows of the table to determine how many times the last name Jones appeared. 

With the index, you only need to look for where Jones would appear, 

alphabetically, rather than looking at every row. 

Sometimes an index can be even more compact: 

Departme

nt 

Row(s

) 

Accountin

g 

4, 7 

Engineerin

g 

1, 6, 8 

Sales 2, 3, 5 

With this index, you can quickly find the number of people in each department, or 

the rows with details about those people in the original table. It's worth noting that 

a suitable index built from your original table can allow you to answer some 

questions without consulting the original table at all. In this case, a count of persons 

in each department is available in the index itself. 

Similar to the examples above, an index in a database system is a dataset, 

maintained along with the table being indexed, that can greatly improve the time 

it takes to find some data in the table. In order for the index to help accelerate table 

access, a few features are required: 

1. Random access The system must have some capability of random access of 

rows in the table. That is, the system should be able to move to some spot 

partway in the table and read rows from there, without having to perform a 

disk read from the beginning of the table. In the initial table, you see a row 



number for each row. Knowing the row number, you can quickly locate and 

read the row of interest to you. Similarly, a database system will store some 

kind of location information, like a row number, or file block number, that 

the system can then use to quickly locate and read the row without scanning 

the entire table. 

2. Well ordered index data In the table that indexes on ID, the ID values are 

ordered, and this allows you—or a computer system—to quickly locate any 

ID value in the list. Given any random row in the index, you can compare its 

ID value to the one you want and judge right away whether the entry you are 

seeking falls before or after your current position. This means that even with 

very large indexes, you can quickly locate the entry you are seeking with very 

few reads into the index. 

3. Alignment of index and table Of course, if the index is to be of use to you, 

the records in the index must correspond exactly with the rows in the table 

being indexed. Otherwise, the index might cause you to attempt to read rows 

that are not present in the table, or worse, might lead you to miss rows that 

are present in the table! Questions addressed using an index that is not 

perfectly aligned with the original table are likely to yield incorrect answers. 

4. Indexing on the right fields In the examples given here, the index on ID aids 

access to the data when you reference records by ID. The index on last name 

helps with access when referencing records by that column. However, if you 

ask a question about first name, there is no indexing support to improve the 

performance of a query on that column, unless you build another index for 

that purpose. Every index you define requires additional space and compute 

time, so it is important for you to judge which columns would warrant 

indexing—those you will use frequently, or in queries that you need to run 

quickly. 

2.19 INDEXES AND KEY CONSTRAINTS 

 

In addition to using indexes to aid query performance, many systems that have 

table indexing will use unique indexes as a way to enforce primary key constraints. 

A unique index will permit no more than one entry for its key value (the value being 

indexed). Because the indexed items are well organized, the system can very 

quickly determine whether any given value is present in the index. By creating and 



maintaining such an index on the primary key column of a table, the system can 

quickly determine if some new row submitted for insert repeats an existing primary 

key, and it can reject that row right away. It is fortuitous that the primary key is also 

a common value to use for finding a row in a table, so the unique index on primary 

key does two things: it helps to enforce uniqueness on the primary key values, and 

it delivers speed to many queries. 

Foreign keys are also often enforced with the help of indexes. A database system 

will often create an index on a column when that column is declared as a foreign 

key. Consider, for example, a department table, and a related employee table. 

Each record in the employee table has a department_id as a foreign key to the 

department table. If the system builds an index on employee.department_id, then 

it becomes a simple matter to enforce some foreign key constraints: if a user 

attempts to delete a department row, a quick check of the index on 

employee.department_id can determine whether this delete would leave some 

employees without a department, and so whether the delete should be prevented. 

Foreign key constraints may work in a different way from the one above. In some 

pairs of related tables, such as an order table and a line_item table, the foreign key 

of line_item.order_id can be used to efficiently support a cascading delete. That is, 

whenever an order is deleted, the line items for that order have no reason for 

being; so the system can use the id of that order and the line_item.order_id index 

to quickly find the companion rows in the line_item table and delete them. 

MAINTAINING INDEXES 
 

Notice that every index on a table requires a dataset in addition to the original 

table, and that the index necessarily contains data that is a repeat of the table data. 

To make use of the index, there must always be a way to maintain consistency 

between the index and the indexed table—point 3, "alignment of index and table," 

in the numbered list above. Some systems maintain a table's indexes automatically, 

along with changes to the table, and some do not. 

In the case of key constraints, it becomes critical that the maintenance of indexes 

occurs automatically and transactionally, at the same time as DML on the indexed 

tables. For example, a unique index must be checked and updated at the time of 

each row insert, in order to correctly aid in the enforcement of a unique constraint 

on primary key columns. 



In addition to supporting key constraints, it can be helpful if the system provides a 

guarantee that indexes are always automatically synchronized with their tables. 

Operational databases often provide automatic synchronization of tables and 

indexes, and they rely on database transactional capabilities to do so. 

In some systems, indexes are not updated automatically at the same time as table 

DML. In these systems, an index will become "stale" and inconsistent with its table 

whenever any DML on the table is performed. In these systems, you will perform a 

rebuild of all needed indexes as part of ETL: load tables with new or updated data, 

then rebuild indexes prior to any query activity. 

To summarize, there are two ways that indexes may be maintained: 

● Transactionally, in lock-step with table DML: This will impose some 

performance cost on every DML statement. In exchange, the system can 

support primary key and foreign key constraints and always help to 

accelerate queries. This is good for operational databases. 

● In deferred rebuild, separate from table DML: This does not help support 

key constraints at all. To use indexes for runtime performance, you must 

rebuild the indexes as part of data preparation before running your queries. 

This approach occurs often with analytic database systems. 

2.20 A FINAL NOTE ON INDEXES WITH BIG DATA 

It is worth noting that the Apache Hive project has had only limited support for 

indexes on tables in the big data space. In Hive, indexes are supported only on 

specific file formats, and only with deferred rebuilds. A primary obstacle is the 

inability of many file systems to provide random access to data, point 1 in the 

numbered list above. In fact, as of Apache Hive version 3.0, the project abandoned 

support for indexes altogether. (Many companies are still using older versions.) 

Analytic systems in big data accelerate query performance with other techniques, 

such as extremely efficient columnar file formats, like Apache Parquet, and 

optimized query engines like Apache Impala. You'll learn more about these later. 

When enterprises need extreme speed on queries, they may choose to invest in 

complete, dedicated indexing systems, using software such as Solr or Elasticsearch, 

both of which use Apache Lucene indexing internally. 

  



WEEK 3 

 

Learning Objectives 

● Explain how different volumes of data affect how data is stored and 

processed 

● Categorize a variety of data and identify processes that generate data in each 

category 

● Describe the challenges that make RDBMSs a poor choice for big data. 

● Relate the extent to which data is structured to the kinds of questions that 

can be answered using that data 

3.1 HOW BIG IS BIG DATA 

 

The first question some people ask about big data is: How big? The answer is a bit 

nuanced. Let me give a few sizes. A bit, of course, is a minimal unit of digital data, 

usually represented as a value 0 or 1. A byte is 8 bits, and can store an integer from 

0 to 255, or a single letter, or symbol from a narrow character set. 4 bytes can store 

an integer in the range around plus or minus 2 billion, and the most popular 

character encoding is UTF-8, which takes 1 to 4 bytes per character. Here are some 

larger units of storage, and I could go beyond exabytes to zettabytes or yottabytes. 

You probably know the size of the memory and disk storage of a powerful personal 

computer.  

The memory may be a handful of gigabytes are a little more, and the disk storage 

is likely to be a few terabytes or less. This machine allows you to store many emails, 

books, spreadsheets, photographs, applications, and more. You can readily run a 

relational database sized at a few gigabytes. Now, think of the size database that 

you would consider out of the question to maintain on this personal computer. 

Imagine if the computer is sized up for business use, and you can probably multiply 

the sizes by 10 or maybe 20. (Of course I'm giving only general figures here.) Now 

compare this to an analytic database I know of (running Apache Hive) that was sized 

at 300 petabytes in early 2014. There were larger data stores then, and there are 

even larger ones now. The biggest organizations today think in exabytes at the scale 



of their big data. So, what is the minimum volume for big data? I hate to commit to 

an exact number, but I once heard a speaker say around 30 terabytes.  

That sounds about right to me - - something on that order of magnitude: of tens of 

terabytes. At that size, things slow down and you reach the limits of what you can 

expect to do with conventional software on a single-computer setup. The two 

important concepts I'm going to talk about in the next videos are one, the volume 

of big data is not just more: it's different. And two, technology that handles modest 

volumes of data breaks down with larger volumes of data. I'll elaborate in the next 

video, and later in the course.   

Distributed Storage  Consider the storage capacity of a single disk drive - - whether 

it is a hard disk or a more expensive solid state drive. As I'm speaking, a single drive 

usually stores around a terabyte, or a handful of terabytes. Now consider if you 

want to store 30 terabytes, or 30 petabytes, or more! In modern technology there's 

no choice but to store your data across multiple disk drives, and the largest data 

stores must necessarily span thousands of disk drives. So, a big data store relies on 

"distributed storage."  

For distributed storage, instead of storing a large file sequentially, you can split it 

into pieces, and scatter those pieces across many disks. This illustration shows a file 

split into pieces, sometimes called blocks, with those blocks distributed across 

multiple disks for storage of the file. The big data platform Apache Hadoop includes 

a file system called the Hadoop Distributed File System, or HDFS. In HDFS, a single 

block is usually of size 128 megabytes. So, a one-gigabyte file would consist of 8 

blocks, and a one-terabyte file would consist of 8000 blocks.  

If you study Hadoop administration, you'll learn more about the placement of 

blocks on different disks, but the more-or-less random scatter of blocks across disks 

is a common general case. Notice, though, that if one disk fails, then a part of your 

file is lost. This presents a problem for keeping the file system available. You can 

usually purchase a disk drive with a tested mean time to failure of 100,000 hours, 

or just over 11 years. And this gives you a high degree of confidence if you just use 

one drive on one computer, making periodic backup copies, for a number of years.  

But, what if you have a 1000 drives ganged together, and each one is needed to 

keep your files available? The mean time to failure is now about 100 hours - less 

than a week. With 10,000 drives, you can estimate a drive failure every 10 hours. 

So disk failure must be an expected, common occurrence for big data systems. In 



order to keep files available, HDFS keeps redundant copies of blocks on different 

disks. The accepted standard for redundancy in HDFS is 3 copies. If one disk fails, 

there are still 2 copies of each lost block available. And, the file system is self-

repairing: the system notices the failure of a disk, and automatically makes 

additional copies of the lost blocks, distributed across the remaining available disk 

drives.  

If you study file system and disk architectures, you may recognize the approach of 

HDFS as similar to a RAID 10 design. It is a fairly simple approach, that requires you 

to invest in raw disk storage volume that is triple the usable space you need in your 

file system. In other words, since HDFS stores each block 3 times, it requires, for 

example, 3 gigabytes of disk to store a 1 gigabyte file. A Hadoop installation on 

premises in a corporate data center is usually made up of banks of standard 

computers, each with its own memory, processors, and disk storage, combined in 

a single computing cluster. Such a Hadoop cluster pairs computing power - - 

memory and CPU - together with disk storage. For these systems, some disk space 

must be set aside for software and temporary working space on each computer.  

So, the ratio of raw disk storage to usable space in the big data store is really 4-to-

1, instead of the 3-to-1 ratio I gave a minute ago. Now, how much does storage 

cost? As I speak, hard disks cost around 3 cents US per gigabyte, and the faster solid 

state disk cost around 20 cents US per gigabyte. Including the 4-to-1 ratio of raw 

disk space to file system space, you have these estimates. Considering the largest 

big data stores reached to hundreds of petabytes, you can see that an organization 

needs a very compelling reason to choose faster solid state drives at this scale. 

Clearly, there's plenty of motivation to look for space-efficient file formats and to 

do file compression.  

Alternative file systems to HDFS are also interesting, in that they may offer trade-

offs between cost, storage footprint, write times, and read times. I'll talk about 

cloud storage later, but I just want to point out here that storage costs at big data 

scale are significant. This is true regardless of the storage solution you choose, 

whether it's cloud storage or storage on premises in your data center, and whether 

or not you deploy specialized hardware storage solutions. Here's the main take-

away of this video: at big data scale, there must be a way to store data in your 

database - and even a single database table - across multiple disks, and so a 

conventional file system that stores each file on a single disk is not adequate. 

Distribution of data across a large number of disks is the norm with big data.  



3.2 DISTRIBUTED PROCESSING 

 

Now consider the time it takes to read data from a disk. Starting with the basics, 

assume a common hard disk drive, with a sequential read rate of around 128 

megabits per second. How long does it take to scan your data? (By "scan" I mean 

reading through the data end-to-end, one time.) I'll stop at 1 petabyte! You can see 

that at the scale of big data, the read times become huge. What if you invest in 

higher solid state drives at around seven times the cost? I'll give the numbers for 

drive that is considerably faster, delivering a sequential read rate of around 3 

gigabytes per second. This is much faster - - though still far from instantaneous.  

And remember that an exabyte is a 1000 times the size of a petabyte, and it would 

take over 10 years to read once, even at the faster rate! Fortunately, distributed 

storage also brings you "distributed parallel reads." If your programming is clever, 

you can avoid scanning your file from start to finish and instead, read different parts 

of the file in parallel, reading from multiple disks simultaneously. Consider, say, a 

ten-terabyte file.  

From my previous calculations, reading this file one time end-to-end would take 22 

hours from a (rather large) hard disk drive, or nearly an hour from a solid state 

drive. Now look at the time to read the file if you combine the total read capacity 

of multiple disks. This rough calculation gives times assuming that your reads have 

no wait time and no contention with other programs for disk usage. So, these 

numbers only give you a sense of the times you can expect at best, and in idealized 

setting. And actual times will be longer. You can see that read times have a 

significant impact on the time you can expect to do any kind of processing on big 

data, and that you must use multiple parallel reads in order to achieve good read 

times.  

What goes with multiple parallel reads? Multiple concurrent process threads, 

running on multiple computers. Suppose your program needs to find all the records 

for a few customers, and give total net amounts for their purchases and payments. 

A distributed set of processes can do parallel reads, selecting just the needed data 

for the desired customers; then these partial results can be collected in another 

process for final calculation and display. If your program calculation is sufficiently 

complicated, then there may be an additional stage of distributed processing, in 

which intermediate results are reorganized by grouping or sorting then processed 

further, and then, there is a collection and display. This intermediate reorganization 



of interim results can be called a "shuffle" of the data. At big data scale, the shuffle 

of data between distributed processing stages involves heavy network traffic, and 

may require temporary disk usage on some machines to complete properly. If the 

calculation on your original data is even more complex, it may require another 

shuffle, and another processing stage before results can be gathered and displayed.  

In principle, a program may require any number of processing stages, with a shuffle 

between each stage. In the general case, your big data program may not produce 

a small amount of data for your display but instead, may read a large data set, and 

produce another new large data set. In this case, your program will perform not 

just distributed reads, but also distributed writes. With large data reads plus large 

data writes, your program makes even more demands on disk read/write capacity. 

It is no wonder that these programs are "batch programs" - - that is, real-world 

programs on real-world big data often take minutes, or sometimes hours or more 

to complete.  

I've had one customer for whom one data processing program ran for two weeks! 

And as before, with complex calculations, your program can have one or more 

shuffle phases prior to the final output. With large shuffle between stages, your big 

data program can take even more time. Perhaps you realize by now that I've been 

describing a generalized big data processing framework called MapReduce. This 

framework was first presented in a paper from Google in December, 2004. Then in 

2006, a team of engineers working on big data indexing announced a project to 

implement Google's ideas in open source software.  

That project was named Hadoop after a yellow plush elephant toy that belong to 

Doug Cutting's young son. Today MapReduce is a solid production-quality 

framework for processing big data. HDFS and MapReduce form the initial basic 

components of the Hadoop platform, for storing and processing big data, and they 

remain in use today. Apache Spark uses the same underlying processing paradigm 

as MapReduce, with independent parallel reads into multiple processes, and 

possible shuffle into another stage of processes, and so on.  

Spark improves on MapReduce in a number of ways, including making use of the 

greater amount of memory available in servers today, so the intermediate use of 

temporary disk is greatly reduced, resulting in significant performance gains. Today 

you can choose to store data on premises in your data center using HDFS, or Apache 

HBase, or some other storage approach; or in the cloud, with Amazon S3, Microsoft 

Azure, or some other cloud storage. Some companies use a hybrid approach, with 



data generated in the company's servers stored on premises, using say, HDFS, and 

data generated on the Internet remaining in the cloud. You can use content from 

both data stores in one program. Transfer of big data volumes between cloud and 

"on-prem" storage is not free.  

Look back at the estimated time to read big data, and note that network transfers 

also take time, and that cloud providers will charge a fee for a high-volume 

transfers. For these reasons, some users say that big data has "high mass" and "high 

inertia," and "doesn't want to move from where it's generated." On the other hand, 

it can simplify your data and programming practices to have your big data 

consolidated, whether that is on-prem or in cloud storage. In the end, it's your 

decision, your business decision, whether you want to choose on-prem, cloud 

storage, or a hybrid of the two. Regardless of your choice, your big data store will 

necessarily be distributed across many storage devices, and processing will also be 

distributed in nature.  

 

3.3 STRUCTURED DATA 

 

The volume enabled by big data storage means that you can capture the contents 

of your operational databases at different times, many times over. But that's far 

from everything you can store. Here's an important example. In the recent past, 

organizations would keep machine logs from their applications for a limited period 

of time - - maybe for 24 hours, or for a few days. These logs were then used for 

troubleshooting problems in the short term. Today, you can capture and store logs 

spanning years, so that this data becomes more than a resource for 

troubleshooting recent problems: it is now a new source for insight about the 

activities and trends in your business.  

It's easy to turn on informational logging in production programs, and logs can be 

generated, captured, and stored without interfering with the normal operations of 

the application. And then, there's publicly available data. Online search engines are 

able to record and keep details about every search ever entered, and social media 

sites keep every message and comment, on every subject. News archives are 

digitized and current news articles are published in digital form. The number of 

datasets, articles, photos, audio, and videos available on the internet is only 

increasing. You can obtain these kinds of data for little or sometimes no cost. You 



can then use this data to gain richer insights into your own data. And then, there's 

the Internet of Things. The era of IoT is just beginning. Vehicles, appliances, and 

other devices will record simple measurements, generating data worldwide at a 

pace at least one or two orders of magnitude higher than the total production of 

digital data today.  

The important thing to notice is that, because big data stores let you store such 

high volumes of data inexpensively, you can now store many new kinds of data. So, 

big data has not just high volume, but also has high variety. You can classify digital 

data as structured, semi-structured, or unstructured. These categories do not have 

strict boundaries, but they do have general meanings that you can understand and 

apply. I'll start with a discussion of structured data. A simple definition of structured 

data is: data that conforms to a set schema. Look at this simple schema and table 

from last week.  

The important thing about this table is - that without even looking at the data - you 

have a guarantee that every record that will ever appear in the table will always 

conform to the table schema, without any exceptions, ever. If the columns are NOT 

NULL, you have even stronger guarantees on the data. This is structured data. And 

since every record in a relational database is a row in a defined table, you have a 

guarantee of structure - - even more so if the database is normalized. The 

widespread use of relational databases, and the table definitions required for all 

relational data, yield a common notion that structured data, and data in a relational 

database, are equivalent. This is not universally true, but it is largely so. I will discuss 

ways a relational database can accommodate some unstructured data shortly.   

3.4 UNSTRUCTURED DATA 

 

Unstructured data, is plainly enough, data without clear, definite structure - - 

especially the structure you find in normalized relational tables, using atomic values 

and simple data types. Natural language text is one type of unstructured data. Look 

at these two records: These lines carry information about individuals' names and 

ages, but not in a consistent, organized form, with names and ages put into atomic 

fields. Suppose you have ten thousand lines of text like this, where people give their 

name and age in years, using informal language.  

You cannot readily use this content to find the average age, or the most common 

name. Even this simple text presents obstacles to analysis. And the broader case of 



written text in general is even more challenging to analyze. Media files are also 

examples of unstructured data. Of course these files have a definite format, like 

MP3 for audio or PNG for images, but they are not files of the simple data types 

you have for relational database tables. You can readily store and copy media files, 

and you can reproduce sound and images from them using suitable technology, but 

what if you want to search the data? Imagine if you have MP3s of 5,000 songs, and 

you want to find songs with a particular singer. MP3 files do have an optional 

metadata tag, with up to 30 optional characters for "artist name", but if the singer 

names are not found there, you cannot easily search the files.  

You must first tag every file with a singer names, and then you can search the tags, 

and not the MP3 content itself. Media files, satellite images, medical x-rays - all 

these are examples of unstructured data. Relational databases do allow you to 

store some unstructured data. I'm thinking of the character data type. Many 

RDBMSs provide a character string type that will store just over 65,000 characters 

in one field of a row. This is more than enough for most news articles, and you can 

use a column for natural language in this way, then that qualifies as unstructured 

data. Even more extreme or the BLOB and CLOB datatypes sometimes supported, 

that I mentioned briefly before. A BLOB column can store up to 4 gigabytes of 

binary data; and a CLOB, up to 4 gigabytes of character data.  

Not all RDBMSs support these data types, and those that do provide no 

functionality at all for searching or analyzing their contents. As far as the database 

is concerned, BLOB and CLOB columns are undifferentiated masses of data that can 

be stored and later retrieved, and that is all. When you leave out BLOBs and CLOBs, 

and you use text only for atomic values like names and labels, then you can equate 

your relational tables with structured data. But the broad range of digital media 

and text we have today form a great mass of unstructured data.  

3.5 SEMI-STRUCTURED DATA 

 

Some data can be characterized as "semi-structured." This is usually defined as data 

in which fields in a record are tagged, but there is no definite schema that all 

records are guaranteed to meet. Look at this set of JSON records: You can see the 

tags: name, pcode, age, and city in these records. However, there could be other 

records in the dataset, and you have no guarantee that only these tags will appear, 

or that field values will have consistent data types. Another form of semi-structured 

data is XML. This clearly indicates tags and values for different records, but again, 



the XML document alone does not have a schema. Many data services on the 

Internet provide data records on request using a programming API.  

Such records most commonly come to you as JSON or XML. Of the two, JSON is 

more popular, mostly because it is more compact. JSON and XML are the most 

common forms of semi-structured data. A CSV file with column headers is another 

form of data with labels but no schema. Similarly, if you create a spreadsheet, you 

can have headings for each column, but you have no constraint that requires you 

to record similar data elements consistently in a column. Informally, some people 

use the word semi-structured to mean that data has some structure, but without 

their regularity or schema of structured data. Look at this log file example from the 

documentation on the Apache HTTP Server: An Apache Server can be configured 

to emit a log entry like this for every request it receives, and the total of all such log 

records hitting a website is indeed a rich source of information.  

The fields in this line are defined: Armed with this information, you can use 

character patterns like regular expressions to break out pieces of the character 

string into specific, atomic values, and these can be shaped into a structured record 

to the extent that all records conform to this format. The challenge with log files is 

that servers may have a variety of options in what is logged, and there is no 

enforcement of the content or format of logs. Also, the logging options of different 

kinds of servers may vary, and custom logging created by engineers can vary widely 

in the kinds of data recorded. So, in this second, looser definition of "semi-

structured data," log files serve as a good example.  

 

3.6 WHAT ABOUT VELOCITY? 

The common characteristics of big data applications, called "the three Vs of big 

data," are volume, variety, and velocity. (Some people like to add a few more Vs in 

their discussions, like value and veracity.) 

The velocity of data—the speed at which data is generated in modern systems—is 

another dimension that has grown notably in recent years with the rise of the 

internet, especially social media. Popular search and social media sites commonly 

generate billions of messages per day. 

Another major increase in the velocity of data generation is underway now, with 

the rise of the internet of things, or IoT. Already, navigation apps on smart phones 

generate individual location records at high frequency. In the near future, metrics 



like location, temperature, vibration, and fuel level will be reported by all kinds of 

transportation vehicles, and other data points will be produced by devices in 

manufacturing, distribution, retail, medicine, and home life. 

Ingest 

Big data systems provide choices for data stores that can hold great volumes and 

types of data, but there remains the challenge of transferring records from where 

they originate into your big data store—that is, the ingest of this data. Aside from 

challenges presented by volume and variety, the velocity of big data production 

presses at the limits of data transmission rates. 

As with data processing of high volumes of data, systems that address high velocity 

ingest do so by means of multiple parallel processes. For example, using open 

source software like Apache Kafka and Apache Flume, enterprises can build ingest 

pipelines composed of hundreds of data streams, transferring petabytes of data 

daily. These systems use multiple servers and processes to achieve high rates of 

data throughput between multiple points, using many concurrent transfer paths. 

StreamSets is open source software that lets designers create, monitor, and 

maintain data-transfer pipelines using a graphical user interface. 

Once data records have been ingested into your big data store, you can contribute 

to the velocity of gaining insights by learning to write correct queries quickly, and 

using tools such as Apache Impala that can deliver query results with low response 

times. Data analysts, while not mainly concerned with the mechanics of moving 

data from one data store to another, certainly do care about the timeliness of 

analytic results. Because of the variety of storage formats supported by Apache 

Hive and Impala, your enterprise can move data in your big data store in nearly any 

format, and you can begin to perform analytic queries immediately thereafter. 

3.7 STREAM ANALYTICS 

Hive and Impala are designed to run against a data set that remains unchanged for 

the duration of your query. You need a distinctively different form of processing if 

you wish to process data records as they are produced. 

Such a form is stream analytics, in which analysis is done on data streams while the 

records are in motion, and prior to the time records come to rest in storage. This 

involves processing the data in one of two ways. One technique is to respond to 

each record as a data event that can be examined, and which can then trigger some 

other action like an update on a graphic display or a change in a machine setting. 



The other technique is to use micro-batches, in which the records accumulated 

over a small time interval, say each second, are gathered and processed quickly to 

produce a near real-time information point or action in response. 

Apache Spark has a subproject focused on stream processing, called Spark 

Streaming, and Apache Storm is another open source project devoted to stream 

processing. Proprietary software such as Splunk focuses on both data transfer and 

stream processing. Interestingly, Splunk pipelines can process data records in 

motion, and bring the data to rest by storing it in a Hadoop cluster. This use of 

different software tools in combination is common in enterprises today. 

Spark Streaming, Storm, and Splunk each have their own specific programming 

interfaces for you to do stream analytics. Confluent, a company that supports 

Kafka, seeks to leverage SQL skills like the ones you will learn in this specialization: 

they support a product called KSQL, which allows SQL-like statements to process 

records passing through a Kafka system. 

Conclusion 

The software tools you will study in this specialization—Impala and Hive—are 

designed for SQL-style analysis of data at rest, so the velocity of accumulating big 

data is of less importance here than the volume or variety. The skills you develop 

here are vital to any work you may do in big data analysis. 

While the ingest of new records into storage is not a task of data analysis, Impala 

and Hive do help you address the velocity of big data in one sense: they allow you 

to begin querying your data immediately after it comes to rest, without large delays 

for preparation before you begin your analysis. 

For analysis of data records while they are still in motion, you should consider 

stream analytics.  This is a separate but related activity, and you may or may not 

opt to work in that area in the future. 

  



 

 

3.8 STRENGTHS OF TRADITIONAL RDBMSS 

 

 

While I'm discussing the innovations of big data, it's worthwhile to once more 

recognize the strengths of traditional RDBMS technologies. Last week I discussed 

how you can use normalized table designs and database triggers to codify complex 

business rules in your database. The constraints you build into your data models, 

together with ACID-compliant transactions and stored procedures, allow you to 

build high-quality financial applications and other online transaction processing or 

OLTP systems, with your database at the center of your total application design. 

The strong business constraints on allowed data in your database can exert 

centralized control over what your business will accept as "good data," no matter 



what user interfaces or other programs you build out in your organization. The 

efficient enforcement of business rules, and the kinds of operational databases that 

this affords, represent one of the great successes of SQL and relational technology. 

Another strength of relational systems is that - just by storing your data in tables - 

you will automatically have structured data, not counting large text or binary fields. 

I'll discuss a bit later the kinds of analysis you can do with different kinds of data, 

but for now, I'll just say that a great many analytic techniques rely on data first 

being in a tidy, structured form.  

For a data analyst, having data in structured form to begin with is a great 

advantage, in that you can skip over some of the effort of preparing the data, and 

proceed more directly to analysis. Relational technology has become so widely 

adopted and mature that you can find good choices for relational database 

software that you can easily install and run on almost any computer. These include 

PostgreSQL and MySQL Community Edition, which are free database servers, and 

SQLite, a library that less programmers embed an ACID-compliant database in their 

own programs without needing a separate database server. This means that - when 

you stick to mostly structured data and your data size is small or medium - you can 

readily choose an RDBMS to handle your data storage, and the software will help 

to keep your data organized and useful.  

When your database system implements the DCL commands of GRANT and 

REVOKE properly, you can use these to manage security on your data: Through 

various applications, users connect to your database with different authenticated 

user IDs, and you can give different users access to different parts of the data. The 

RDBMS helps you manage your access in an orderly fashion. A well-designed and 

appropriately sized RDBMS is reasonably fast. With smaller databases of a few 

thousand rows and a few users, many queries can be reliably served in sub-second 

time and analytic queries will often require only a few seconds. Larger businesses 

with more users and more data will of course need to invest in bigger, more 

expensive solutions in order to keep up runtime performance.  

There are literally thousands of programs and tools that use SQL to store and 

retrieve data, from visualization tools and reporting, to particular applications like 

manufacturing support, or sales management, or healthcare. You can take 

advantage of this rich ecosystem of software that has grown around relational 

databases, to get you to working systems reasonably quickly. It's my belief that 

conventional RDBMS solutions, especially at small and modest sizes, will continue 

to be useful for many years to come.  



3.9 LIMITATIONS OF TRADITIONAL RDBMSS 

 

 

Now I want to talk about some limitations of traditional RDBMSs, especially when 

presented with the challenges of big data. I've twice made the point that relational 

systems have the strength that they can enforce strong constraints on your data, 

and so they can enforce business rules. For these operational database designs, the 

good news is that records that violate your constraints are rejected by the 

database. But, the bad news is that records that violate your constraints are 

rejected by the database.  

In other words, your database cannot store a record that does not conform to your 

pre-defined table schemas. This fundamental characteristic of relational systems is 

commonly termed "schema on write": records that do not meet your pre-defined 

structure are rejected with an error code and are never stored. So, schema on write 

can be regarded as a strength or a weakness, depending on what you're trying to 

do. In the big data world, you may be presented with millions of records a day, and 

schema on write presents an obstacle if you want to retain them all - even the "bad" 

ones, or the ones for which you do not have a schema defined already. Now, you 

might get the idea that you can define a database table with a single BLOB or CLOB 

column, and then you can store any records - all records of any sort - in that table. 



This is the extreme of a thoroughly non-normalized data model. And yes, you could 

do that, but hold that thought: I'll come back to it. A great beauty of relational 

systems is that they allow users to simply issue a statement like CREATE TABLE, and 

the software takes care of all the rest. That is, you think in terms of tables with rows 

and columns. The database software separates you from the lower level concerns 

of the file storage, and managing files with all the ongoing changes to data. But 

make no mistake: the data processing "under the hood," beneath the level of the 

SQL commands you issue, is complicated.  

This abstract layer of working, with isolation from implementation details, is 

generally considered a strength of RDBMSs, but it does not come for free. The 

software that keeps your data in nice neat tables for you will incur storage and 

processing costs to do so. And, for many production enterprise applications, 

significant monetary costs as well. Adding storage, processing, software licensing, 

and personnel needed for support, a relational database is a more expensive type 

of a data store, where the total cost per terabyte of data is perhaps 10 times or 

even 100 times the cost of a simpler data store like a file system.  

The higher cost per terabyte is justified if the data you store has high value per 

terabyte - meaning that you have high information content in relatively small 

amounts of data. If you store all your personal contacts of every type - media 

accounts, phone numbers, addresses, everything - you will probably have a few 

thousand bytes of storage total; maybe ten thousand bytes. On the other hand, a 

single HD video can easily be 10 gigabytes. 

 That's a million times more storage for one video! Now, I'll return to the idea of 

creating a table with a single BLOB or CLOB column. The database design provides 

no structure, and SQL provides almost no means for searching, or sorting, or 

calculating any information on your column. An approach like this is an anti-

pattern: an attempted solution that creates more problems than it solves. The 

result of this anti-pattern is a system that is essentially not a relational database at 

all, and its storage cost and performance would be worse than simply storing files 

in a disk directory, and searching them when you need them. I hope by now you 

can see that the careful structuring of data, and the ease of storage and 

manipulating structured data, while all strengths of RDBMSs, play against you when 

you have large amounts of semi-structured and unstructured data.  

It is often estimated that less-structured data accounts for around 80% of all data, 

and this data, with such higher volume and lower informational value per terabyte, 



cries out for other technology than traditional relational databases. There's 

another difficulty I'll mention here: The problems with distributed transactions. 

Suppose you need to run a database transaction that affects a 100 or so rows in 

various database tables. But at larger scale, your changes may affect rows 

distributed across thousands of disks, and some redundant form of storage is 

required to overcome unscheduled disk outages.  

So, how to provide a consistent commit of all changes in a single atomic action? 

You could lock all the rows or tables involved in your transaction, but this would 

quickly defeat the usefulness of your system serving the needs of many concurrent 

users. These large data stores require many disks, and many computers, with 

networks connecting them. Distributed systems are faced with special technical 

difficulties of synchronization over the distances involved. There are efforts to 

support atomic transactions at scale, but these efforts all involve new engineering 

innovations to overcome the limitations of transaction handling in traditional  

 

RDBMSS. 3.10 SQL AND STRUCTURED DATA 

 

SQL, being a language originally designed for working with relational databases, 

excels at querying structured data. Like most computer languages for data analysis, 

SQL has great facility with numerical data types. Look at this data. Simple queries 

can get answers to all the following questions: What value or values appear 

between 4,000 and 5,000? What are the top three values? How many different 

values are there? How often does each value appear? What is the sum of these 

values? What is the minimum value? The maximum? The mean? These kinds of 

questions can be addressed to any set of numeric values. You can go on to find a 

number of summary statistics, like standard deviation, variance, and different 

percentiles.  

If your records have pairs of numeric values, like individual heights and weights, 

you can compute further statistics, like correlation of the two columns. For more 

sophisticated numerical analysis, you are likely to move beyond SQL to a statistical 

language like R, Python pandas, or MATLAB. Look at this data. This column records 

categorical values. Each item value is really a label for a shopping item. For this 

data, the questions you can ask are more restricted: Does a particular item occur? 

How many values are there? How many distinct values? How many occurrences of 

each distinct value? What value or values occur most? Notice you can sort the 



words to aid lookups, but there is little meaning to questions like, what is the 

"minimum" word or the "maximum" word? Categorical values like this are 

common: product names, cities, street names... You may also consider personal 

names to be categorical values. Datasets often use an integer to represent a 

categorical value. For example, grocery stores have an integer code for each food 

item.  

Or, you may use an integer for a customer ID, or a store ID. It can be convenient to 

store these categories or labels as integers, and SQL will happily perform numeric 

calculations on such data, but your own judgment should tell you that it is not 

meaningful to find the sum of all store IDs, or the average employee ID. The real 

power of SQL is in its ability to use the structure of an entire table or multiple tables, 

to combine these in different ways for analytic queries. Look at these tables. 

Imagine more rows of the sort you see here. With this data, you can successfully 

answer many questions: How many stores sell Ugg brand products? What store has 

the lowest price for Women's Classic Ugg boots?  

What boots are available anywhere in a price range from 150 to 160? What is the 

inventory of Reebok sneakers across all stores? How much money in inventory is 

each store carrying? In this course, I refrain from going into the SQL syntax, but I 

can assure you that there are straightforward SQL SELECT statements that can 

answer these questions easily. With a little creativity, combining some initial 

analyses, you can dig even deeper: Is there some store that sells at a higher price 

than other stores in general? Or a lower price? What is the most widely distributed 

brand? With skillful use of SQL, you can gain clear insights into these questions from 

data like this. The next course in this specialization, and the courses that follow, are 

dedicated to helping you develop your skill with SQL to answer all these kinds of 

questions with structured data - especially using big data.  

 

3.11 SQL AND SEMI-STRUCTURED DATA 

Remember, the term "semi-structured data" has two commonly used meanings: 

The first of these is the stricter definition of the two: semi-structured records have 

their own embedded labels on fields, like JSON objects or XML documents, but no 

external schema that records are guaranteed to obey. Some people also accept the 

more relaxed second definition: semi-structured data like log files has some 

pattern, but no definite schema. While some may disagree that the second is a 

correct definition of "semi-structured data," it does describe a kind of data that you 



will see in the big data world. JSON and XML are both special types of character 

strings, so you can have a database table with one column that is a STRING or other 

character datatype and containing JSON or XML. For example, look at this table: 

The json_record column is a STRING data type in the table schema. You may well 

obtain JSON records from some other data source, and then place them in a table 

like this.  

Because the data type of the column is STRING, the table has no governance over 

whether the column contains JSON. Many SQL dialects provide functions for 

extracting parts of JSON strings. For instance, Apache Hive has a function called 

get_json_object. This function provides these results when applied to this table. In 

this example, the function extracts the "total" element from each JSON object in 

the json_record column.  

The string in the third row is not valid JSON, and the fourth row does not contain a 

"total" element in the JSON object. Not finding a result, the function returns a NULL 

value for these records. So, the table does not enforce any schema on the JSON 

column, but the function can extract data from an assumed structure if it is there. 

There is a term for this late application of structure on data that may or may not 

meet the form you assume. If you've read about big data, you may know the term 

I have in mind already. I'll say it in another minute. There are different functions to 

extract possible data elements from columns containing various types of semi-

structured data: JSON functions, XPath functions, and regular expressions and 

other string functions. Apache Hive has all these sorts of functions. Whatever SQL 



dialect you use, you may want to study the list of functions available to work with 

semi-structured data, and such functions will generally fall into one of these three 

categories. In the example I've just given, the JSON is confined to a single STRING 

column in a table. But what if your entire dataset consists solely of JSON records? 

 

 In Course 3 of this specialization, you'll learn how to fit table definitions onto semi-

structured data that originated from some other source other than a relational 

database. Just to repeat, here are some examples of semi-structured datasets that 

you can expect to have in a big data environment. Hive provides an important 

feature that lets you apply table definitions to datasets like this: "schema on read." 

This is the term I was thinking of a minute ago. This style of working with data is an 

important way to gain structure on your semi-structured data. Once you've added 

structure successfully, you can deploy all your SQL skills to perform analysis on 

these types of data. You will learn a great deal more about this in Course 3 of this 

specialization.  

 

 

3.12 SQL AND UNSTRUCTURED DATA 

As you know, unstructured data is of the sort that any information contained in 

records is not immediately, readily available. Broadly, there are two types of 

unstructured data: binary content, like media files; and text, like emails. 

Unstructured binary data is pervasive today: audio recordings, videos, and 

photographs are commonly in digital form, and there are also specialized binary 

records like seismic data or medical X-rays. Sometimes you can store binary data in 

your tables alongside your structured data. Consider this table: Some relational 



systems, like Oracle, allow you to store a binary field using the BLOB datatype, and 

so you can have data like employee photos in a column like this. However, there 

are no SQL commands at all for analyzing the content of the photos. You can store 

a photo in a row, and you can retrieve the photo along with the other parts of a 

row. But SQL provides no means at all for sorting, or searching, or computing any 

results from the photos themselves. Now you can see the original meaning of the 

term BLOB when given as a column datatype. When Jim Starkey at Digital 

Equipment Corporation came up with a datatype "BLOB", he deliberately meant 

that featureless jelly-like mass in the monster movie "The Blob" from 1958.  

It was only later that the word "blob" was tagged to mean "binary large object". 

From the point of view of SQL, the content has no structure and no usable data. If 

you want to add functionality to your SQL dialect to support a specialized binary 

field, you can do so using user-defined functions, or UDFs, supported by many SQL-

based systems. A UDF is a function that you write in a general programming 

language, like C, or Java, or Python, and that you add to the database software 

itself. With some programming effort, you can create a set of functions to 

manipulate a specialized binary field in some way.  

For instance, you may have a set of UDFs that manipulate parts of a field that 

represents genetic information. Be careful, though: this may be a poor design 

approach. Although it may be possible to add your own UDFs to work with custom 

binary content, it is likely you will play against the strengths of your database 

system. The power of SQL is to analyze large amounts of structured data, and the 

best approach is probably to keep the manipulation of binary fields in programs 

outside your database software. Note that many well-known digital formats 

include metadata tags. Digital photographs, for example, contain tags for the 

equipment manufacturer and exposure time of a photograph. Emails have a sender 

or recipient, and a timestamp.  

Simple programs can extract this metadata in structured or semi-structured form, 

and so you can add these as separate fields to a table. Then you can use SQL to 

query this metadata. For example, you can find the oldest photo, or the oldest 

email in your database. Note, however, that you are then working with the 

metadata, not the unstructured content. When that metadata is not present, you 

may work with human analysts to add structured metadata to unstructured 

content. This can be prohibitively expensive for big data scale; however, some 

organizations like museums and libraries have used crowdsourcing to bring many 

individuals to the task. Today, many computing systems go beyond the analytic 



techniques of SQL to find patterns in unstructured data. These programs include a 

variety of machine learning techniques like classifiers that perform optical 

character recognition to read the words in an image, or that can tag images 

automatically, or recognize spoken words. The important thing to note here is that 

such programs extract structured content from unstructured data. You can operate 

on unstructured data in your big data stores using machine learning algorithms; 

probably written in Apache Spark or a deep learning system like TensorFlow or 

DeepLearning4j.  

Once the structured information has been obtained using these programs, this 

resulting structured data may be profitably analyzed using systems like Hive and 

Impala, for the kind of data analysis performed with ease in SQL. Besides binary 

data, the other form of unstructured data is natural language text. Examples of 

text-based unstructured data include emails, text messages, news articles - any 

texts where words are used, not as categorical labels like product names, but where 

the expressive power of the language is used to convey information between 

people.  

Traditional SQL databases typically have some limited support for unstructured 

text. For instance, you can search a set of emails for the ones that contain some 

word. Typical relational systems do not have the benefit of extensive indexing on 

long-form text, and so such a search is likely to be rather slow at big data scale. 

Apache Hive does have a few interesting natural language functions, like the ability 

to find the multi-word phrases that appear most frequently in a large collection of 

text documents. But for the most part, you'll use separate programs for the more 

powerful work of natural language processing.  

So, there are some similarities in the approaches you will most likely take to 

unstructured text and unstructured binary data: You will use some programs other 

than SQL databases to work with such data directly. Fortunately, big data systems 

permit you to store and maintain data of all sorts, bar none, and then bring a variety 

of tools to bear on the data. Without moving data between different systems, you 

can apply machine learning and natural language techniques to get structured 

features from your unstructured data. Then you can use those structured features 

in a SQL-based system like Impala or Hive to gain increased analytic insights.  

  



WEEK 4 
 

4.0 SQL TOOLS FOR BIG DATA ANALYSIS 

 

Learning Objectives 

● Explain the role of different types of database systems and data stores for 

big data applications 

● Explain how dialects of SQL are beneficial for working with non-relational 

database systems 

● Distinguish features or enhancements of SQL that are present with analytic 

databases on big data from those that are not 

● Compare the benefits of different locations for storing big data, including 

how many big data systems loosely couple data and metadata 

 

 

4.1 OPEN SOURCE 

Software products used in big data platforms are often open-source: the source 

code is freely available for anyone to study or use. There are several open-source 

software licenses, including the Apache License and the GNU General Public License 

(GPL). 



Apache Licensing 

Many of the most popular software products used in big data are released under 

the Apache License 2.0. Apache licensing originated with the Apache Software 

Foundation (ASF), a non-profit organization of software engineers world wide. 

Anyone can license their product using the Apache License 2.0, whether or not they 

are affiliated with the ASF in any way. Apache licensing makes a software product 

free for anyone to use, copy, and modify, without requiring any royalty payments 

to the license holder. (Please note, I am not a lawyer, and am not qualified to give 

legally binding advice here.) 

Hue, the software you will use in this specialization to browse and interact with 

data, is an example of open-source software that is Apache licensed. Hue was 

developed by Cloudera, but it is available in software packages from Cloudera, 

Hortonworks (now merged with Cloudera), MapR, and Amazon. 

Apache Projects 

Beyond Apache licensing, some software products are top-level Apache projects. 

In addition to freely providing source code, Apache projects operate as transparent, 

public engineering efforts. Bug reports, enhancement requests, and status changes 

to these are publicly viewable. Each Apache project maintains its own public 

website. 

An Apache contributor is someone who provides programming or documentation 

to a project, and anyone can become a contributor. An Apache committer is 

someone with the authority to incorporate a change into the main code repository 

of an Apache project. Apache cultivates a diversity of engineering perspectives: the 

committers for any project cannot all work for the same company, and decisions 

about the project are made by consensus among the committers. In this way, the 

ASF has made good on its intention to support the development of high quality 

software for the public good. 

Some software products start in one company or team, and eventually become 

Apache projects. The process involves a number of steps, including these: the 

creator of the software donates the copyright to the ASF; the project selects a 

group of committers from diverse backgrounds; the group establishes an orderly 

consensus-based procedure for making decisions going forward; and the team 

builds a public website under the apache.com domain. All these practices are put 

into place with the supervision and assistance of the ASF. Apache Impala is an 



example: Cloudera created Impala and contributed it to the ASF, and Impala 

became a top-level Apache project in November 2017. 

You can visit the home website of the ASF at apache.org. If you scroll down the 

page, you'll see the list of top-level Apache projects, including Hadoop, Hive, 

Impala, Spark, and many others. 

Contribute! 

Please remember that you or anyone you know can become a contributor or even 

a committer on an Apache project! To do so requires talent and effort, and the ASF 

will not pay you, but your work will be recognized and valued around the world. As 

your work is accepted on one or more Apache projects, you'll be helping everyone, 

as well as drawing the attention of the best employers in the software industry. 

 

4.2 BIG DATA ANALYTIC DATABASES (DATA WAREHOUSES) 

 

 



 

In this lesson, I will survey a variety of database systems in the big data world. You 

are not likely to touch all these systems, at least not right away. Nevertheless, I 

want you to have at least an acquaintance with them, so that you will know where 

they stand next to the tools you will use, as a big data analyst. Then over the course 

of this week, I'll bring focus on to the two principle tools you will use in the hands 

on work.  

Apache Impala and Apache Hive. Traditional relational databases, continue to be 

extremely useful and popular. However, with the explosion in volume and variety 

of big data, it became evident that these traditional systems do not serve all 

database needs with the best cost and performance. Alternative systems have 

grown in popularity in the modern era, the era of the world wide web. Among the 

most successful big data systems, are big analytic systems or data warehouses.  

These includes Apache Impala, Apache Hive, Apache Drill and Presto. You will 

become skilled with Hive and Impala in the subsequent courses of this 

specialization. Hive and Impala each implement their own dialects of SQL. Hive QL 

for Hive, and Impala SQL for Impala. These dialects are similar to one another, and 

their uses in analytic systems emphasize a subset of SQL most suitable for data 

warehouses. Other large analytic database systems include Oracle data 

warehousing and Teradata. But these systems tend to have a much higher cost per 

terabyte of data than the others.  

 



4.2 NOSQL: OPERATIONAL, UNSTRUCTURED AND SEMI-STRUCTURED 

 

 

Another category of operational systems are those that do not mandate a schema 

on your records. These include key value stores like Apache HBase and Apache 

Cassandra and document stores like MongoDB and Couchbase.  

These systems vary in the form of data you store. Binary arrays in HBase, various 

data types in Cassandra and JSON like structures in MongoDB and Couchbase. 

These all belong to the category of NoSQL databases and their support for SQL is 

usually weak or non-existent. An important feature of these systems is that they 

provide simple DML and query commands and they physically organize records by 



a specific lookup key. Records can be stored in massive numbers and then a record 

can be found rapidly by its lookup key, but not easily by other values in the record.  

This is in marked contrast to the general approach you find with relational 

databases, where for example, you can easily find sales receipts by price, or by date, 

or by product, or store ID. To understand better the implications of organization by 

key, imagine that you must keep paper files for patients in a doctor's office over a 

period of years. Suppose, you alphabetize your files by patient name, then you can 

quickly find the file for any patient, then you can add new files in their proper place 

without delay.  

But, if you want to find all the patients with some particular symptom, you would 

have a tough time of it, since their records are not organized that way. You might 

create a cross index by symptom, but this would require ongoing effort to maintain 

and even with the index, the files for any one symptom are scattered across the file 

set adding to your work even just to retrieve what you want. But notice, that if you 

can make a commitment that you will always look up files by the client name and 

no other way, then your simple alphabetized organization can keep things very 

simple and efficient for you. Similarly, NoSQL databases perform well when you 

have only a few carefully defined patterns for how you want to access records in 

your data. They can keep data organized to support key lookups at phenomenal 

scale.  

Take for example, the case of an operational database for a social chat application. 

This app has very clear and narrowly defined access patterns, write a message for 

a user, broadcast messages to followers. You can have well over a million database 

operations per second and an even mix of reads and writes. In exchange for this 

kind of performance, your operational database gives up the flexibility of multiple 

uses. In fact, you give up the relational approach and SQL altogether. As for the non 

table structure of data, some developers, especially those unfamiliar with SQL, find 

the JSON like records of document stores, like MongoDB, to be intuitive, which 

contributes to their popularity. 

 

 

 

 



4.3 NON-TRANSACTIONAL, STRUCTURED SYSTEMS 

 

 

 



Another type of system, midway between NoSQL and full RDBMS systems, would 

be a Non-transactional system, for structured tables. Kudu is such a system, it 

allows you to create tables, much like relational database tables using column 

definitions and common data types, like the ones you see in relational tables. Kudu 

can enforce primary key constraints, but not foreign Key constraints. You can 

perform atomic inserts, updates and deletes, on individual rows with high 

performance.  

However, Kudu does not at this time support multi-row, acid compliant 

transactions. By design, Kudu provides a compromise in performance between the 

large-scale analytic databases and the large-scale NoSQL operational databases. 

Look at this chart, as you can see from this diagram, if you want the best 

performance for your large data warehouse, you will use tools built especially for 

this use, like Impala and Hive. You will focus on good data models and file storage 



to optimize for big analytic queries. On the other hand, if you want lightning fast 

CRUD operations at large scale, you will need a great operational system like HBase.  

But each of these two approaches is great at one thing, operational or analytic work 

and weak at the other thing. Kudu, while not the best at either thing, is good at 

both things. When the features and performance of Kudu meet your needs, then it 

simplifies your work to combine the different uses in one tool. Note that Impala is 

integrated with Kudu so, all the analytic Impala SQL select statements you will learn 

over the rest of this specialization will work unchanged with data stored in Kudu. I 

want to emphasize that Kudu provides tables, a SQL interface through Impala and 

atomic single row DML statements. But it stops short of full, multi-row, acid 

compliant transactions. In the Frequently Asked Questions, on the Apache Kudu 

website, you will find the statement that, Kudu is designed to eventually be fully 

ACID-compliant. But this is not the case, as I'm speaking. 

 

4.4 BIG DATA ACID-COMPLIANT RDBMSS 

 

There are considerable technical challenges to providing full acid compliant 

transactions at massive scale. Today, there are a few systems that build out their 

own attempts at cracking this problem. They include the Proprietary Systems, 



Splice Machine, and the open source projects, Apache Trafodion and Apache 

Phoenix. Interestingly, all three of these solutions are based on Apache HBase.  

They take the excellent performance of single row DAML in HBase, and add 

relational table structure and all the mechanisms needed for database consistency. 

Each project involves its own extensive additional software over HBase. These 

systems may be a good choice if you need to support massive databases, that have 

online transaction processing or OLTP. Like a large financial application, or a large 

travel scheduling system. Between the technical issues, the relative immaturity and 

the high expense, these systems are not so widely used as the other systems I'm 

discussing in this lesson. Since these systems fully implement SQL on big data, they 

can serve large analytic queries, such as the ones you will develop in this 

specialization. I think it's unlikely that you will see these systems on the job, 

especially not for data warehouse applications. 

 

4.5 SEARCH ENGINES 

 

Another very different kind of datastore is a search engine. These applications are 

not exactly focused on general purpose, operations or analysis. Instead, they 

specialize in letting you quickly search a mass of undifferentiated documents. The 

most well-known examples are Apache Solr and Elasticsearch. Solr Cloud refers to 

a clustered configuration of multiple Solr servers to achieve massive scale. Cloudera 



search is Solr Cloud fitted onto HDFS storage with tools that let you index extremely 

large datasets found in Hadoop clusters.  

Both Solr and Elasticsearch contain within the Apache Lucene, a high-performance 

indexing system that by the way was created by Doug Cutting, the co-founder of 

the Hadoop project. They are both especially strong with flexible lookups on text 

data. I have mentioned the limitations of relational systems with unstructured text 

data before. If you have some data set like the text of a few hundred thousand 

news articles, a relational database would be crippled, trying to find some 

particular quotation or passage. In contrast, a search engine like Cloudera search 

can index every word, with every word position in every article. So a look up of all 

the articles say with the word automobile and the word family, within five words 

of each other, can be found in a matter of milliseconds.  

These systems can even handle misspellings and synonyms on search terms. When 

you open a web browser and perform a search on some phrase and get results in 

under a second, you are using a search engine like Solr or Elasticsearch. 

Interestingly, the records in a Lucene index can have a schema. Like the day, author, 

publisher, and URL of a news article along with the article. More recent versions of 

Solr and Elasticsearch had taken advantage of this structure and have added SQL 

as a way to access these records even though SQL is not the principle language of 

these systems.  

Please don't worry if you find this survey of technologies overwhelming. Big data is 

one of the great expansions in modern computing and engineers worldwide are 

working to build even more useful systems in this area. In fact, most of these 

systems keep encroaching on one another in their attempts to add features. For 

example, Solr added its own SQL interface in April 2016. In this specialization, you 

will focus on the most well-established technologies for big data warehouses, Hive 

and Impala. However, your skills will be adaptable to a number of other tools in the 

future, not just the specific ones we use in these courses. You may notice that for 

the classifications here, there was a subgroup in the category of operational 

systems for semi and unstructured data, and another subgroup for structured data, 

but there were no such subgroups for analytic systems. While you can do some 

analysis activity on unstructured data, data warehouses depend upon structure in 

order to support the activity of deep analytic SQL queries. I would identify machine 

learning and natural language processing as disciplines for analysis of unstructured 

data these activities include the work of finding patterns in data that lacks structure 

to begin with. 



 

4.6 CHALLENGES 

 

SQL is so well understood, and so widely supported that it's useful to adapt SQL, 

with the wide world of big data. Refitting SQL to support massive data warehouses, 

is a success story today because SQL gives you a concise and ambiguous way to 

request information from tables of any size. By the way, a data warehouse is a large 

analytic database emphasis on large. But there are challenges at larger scale, 

relational systems and especially acid compliant transactional databases based at 

least two major challenges with big data, transactions and data variety. 

Implementing acid compliant transactions with multiple concurrent users is non-

trivial, even on a system with one computer.  

If you wanted to implement a transactional system yourself, you could start by 

studying the book transaction processing by Jim Gray and Andreas Reuter, over a 

thousand pages and go from there. In a distributed environment, the issues 

compound with big data, your datastore spans thousands of deaths with replicated 

copies of data, and computers in the cluster are connected via networking with 

potential irregularity in transfer times. Even worse, consider the split brain 

scenario. Deposes switch in your network breaks, all the computers in your cluster 

remain active, but because of this partial network failure, different subsets of the 

computers lose visibility to one another completely. This situation is also called 



network partitioning. It is a definite possibility in your cluster, and the system must 

address it in such a way that it doesn't give false results or corrupt the data by 

committing conflicting transactions.  

Implementing multistatement transactions on distributed systems is hard, and is 

fraught with special problems that you must take seriously if you want an acid 

compliance system at large scale. The other challenge for SQL on big data, is the 

variety of data in big data stores. SQL is easy to use with structured data, but it is 

almost by definition weak with unstructured and semi-structured data. The 

practice of schema on write is an undesirable way to handle new content for big 

data, while traditional RDBMSs provide great guarantees of structure in data, their 

inability to store a new never before seen content, hinders their ability to retain 

new material for new unanticipated insight.  

Though you have these two fundamental issues, difficulty of scaling transactions 

across a massive distributed data stores and schema on write being unable to store, 

never before seen datasets. Between these two issues, you had the reasons for a 

number of newer database technologies in the big data space. It's for these 

reasons, plus the expense of conventional database products that traditional 

RDBMS technologies have not scaled infinitely, and do not cover all the database 

needs for big data. 



 

4.7 WHAT WE KEEP 

 



 

An assortment of software tools approach data warehouses at large-scale. But 

going forward, I will focus on the tools you use in this specialization. Apache Hive 

and Apache Impala. These open source tools are well established in the 

marketplace.  

Hive was contributed to the Apache Software Foundation in 2008 by Facebook, 

when Jeff Hammerbacher was head of data there, and before he went on to help 

co-found Cloudera. Impala was initially developed at Cloudera, and has been 

generally available since May, 2013 and became a top-level Apache project in 

November, 2017. By now, you have a conceptual foundation in SQL as it was 

originally intended, and as it is still used as the principal language of conventional 

relational database systems. A primary strength of SQL is the straightforward way 

unless you express a wide variety of analytic queries on data using SELECT 

statements. 

 Indeed the expressive power of SELECT statements to answer so many questions 

from your data is the one feature you can reasonably expect from any system that 

claims at least partial support for some dialect of SQL. Some big data systems offer 

only very limited support, for example they might not allow multi-table selects. 

Other big data systems have much broader support for SELECT statements. Hive 

and Impala are examples of this. They support a wide variety of different SELECT 

statements, even more than some RDBMS's support. In order to write a SELECT 

statement, you must be able to view your data as residing in tables with named 

columns and of course Hive and Impala keep that ability. It's reasonable to let you 

manage table definitions with some dialect of data-definition or DDL that create, 

alter and drop statements. There are special variations of the create table 



statement in Hive and Impala, but the point is, this functionality is available in Hive 

and Impala. For managing different users access to data, Hive and Impala also 

support SQL grant and revoke statements. They're familiar data control or DCL 

statements in SQL 

 

 

4.8 WHAT WE GIVE UP 

 

 



A data warehouse is created by gathering data from one, or usually multiple data 

stores into one place for reporting and analytics. A great strength of big data 

platforms today is that they allow you to manage and use data stores of much 

larger sizes with a lower cost per terabyte than conventional relational systems. 

But these big data systems give up transactions, which combine multiple insert, 

update, delete and select statements in a single atomic action. A number of the 

features in a relational system, depend on this combination of statements for their 

implementation, though the loss of transactions has several implications.  

In order to enforce uniqueness in a column, a conventional relational database 

system checks all rows in the column for any new row you try to add, and then 

permits the new row only if its value for the column does not occur in the column 

already. The check for existing values and the addition of a new value must be 

bound into a single transaction in order for this to be done correctly. Uniqueness is 

an important feature of a primary key. So, you can see that transactions enable a 

database to enforce primary key constraints on your database tables.  

Similarly, a database system uses transactional lookups on related tables in order 

to enforce foreign key constraints. Without transactions, you might have tables 

with unique key columns, and you might have consistent foreign key relationships 

between your tables, but the database technology does not guarantee this 

consistency in your data. You cannot assume that rows are unique or that all foreign 

keys are correct. It's up to you to know about this, and to keep your data organized 

in whatever way you require.  

Transactions are used by conventional relational databases to synchronize indexes 

with tables. Maintaining the entries in your index in lockstep with the DML you 

perform on your table. Without transactions, indexes will not be synchronized with 

your table automatically, and you would need to rebuild your indexes whenever 

you need them to be up to date. Database triggers also depend on transactions. 

Business rules and triggers and cascading DML statements and triggers both 

require the transactional ability to atomically combine multiple changes and 

queries in order to maintain database consistency. 

Although you could conceive of some store procedures that perform only a single 

action in a database or that perform multiple actions but not atomically, these 

would give you a radically smaller subset of the store procedures you'd want to 

have in order to build up application logic in your database. Though as a practical 



matter, effective stored procedure programming also requires transactions. 

Without transactions, database triggers and stored procedures are not possible.  

Because of the difficulty of synchronization over multiple distributed copies of file 

data, dump file systems like HDFS, the Hadoop Distributed File System, lack the 

ability to update file content in place. Following from this limitation, big data 

warehouse systems give up SQL update, and delete statements that can change 

values on individual rows or delete individual rows. The workaround is to rebuild 

tables completely including desired changes in a batch process. As a side note, I 

want to mention that when you use Impala on Apache Kudu as your data store, you 

can manipulate individual rows with UPDATE and DELETE statements. It is this 

capability that makes Kudu a useful new system or a combination of operational 

and analytic work. But without this special feature of a storage system like Kudu, 

individual UPDATE and DELETE statements are not possible. 

 

4.9 WHAT WE ADD 

 

 

A feature that was added to SQL for querying bigger tables, is table partitions. This 

feature is actually not limited to big data systems. Table partitioning is a well-

established feature of virtually every RDBMS that seeks to aid performance of 

queries as tables grow larger. By the way, writers and speakers often use the word 

partitioning alone to refer to either table partitioning or network partitioning. 



These are completely different concepts and you need to pay attention to context 

to know which of these is being discussed. The idea of table partitioning is simple.  

You take a bigger table and the system lets you specify some simple logic, the 

store's rows in physically separate file directories or partitions according to some 

value found in the rows. For example, a table of worldwide retail sales can store 

rows in a separate partition for each country. Now if you run a select statement to 

find say, the total sales figures in the year 2015 for Australia, the system would 

disregard all rows except those found in the partition for country Australia.  

This quick dismissal of unneeded partitions from your query is called partition 

pruning. It means that the system needs to further process only a fraction of the 

data and the query result is assured to be nevertheless correct. This is especially 

helpful for query performance on large tables. Notice that partitioning on country 

does not help your query at all if the query does not include country in the 

qualifications for data you want to analyze. So, whether and how to use partitioning 

is a matter for you to decide based on the queries you plan to run most often on 

your large tables.  

Table bucketing is similar to table partitioning. It subdivides the rows in your large 

table into separate areas of storage but usually in a random or pseudorandom way 

rather than a straightforward predictable way. Bucketing can help performance 

when you want an analysis based on an arbitrary sample of your table and not all 

the data.  

Big data stores also support a variety of file formats, re-structured and semi-

structured data. One simple file format is a CSV file, where records are stored as 

text and fields are separated by commas. Fields can be delimited by tabs or some 

other character as well. Other text-based format supported include XML and JSON.  

A completely different format developed for use with big data is defined by the 

Apache Avro project. Avro defines a binary file format for saving structured data to 

disk. Binary files are not character-based and so there's no way to show you a useful 

example here. Avro files require far less storage space than a text-based format 

especially when you have lots of numeric values in your rows. But there isn't just 

one binary file format. Another format is Apache Parquet. Parquet files like Avro 

files, store structured records in a binary format but it's a different format from 

Avro and it can be even more space efficient than Avro for many types of tables.  



Files can be compressed for even more space savings and encrypted for data 

security if needed. Your big data store can have different files and any mix of these 

formats and any other formats you can find useful or that may be developed in the 

future. So, you have no lock into one vendor or one kind of file.  

Another major addition to SQL, is a set of additional data types called complex data 

types. One principle of normalized table design in most relational databases is to 

keep all your column types atomic. In other words, each field of a row should store 

exactly one thing. Here is a partial list of the datatypes supported in Impala. The 

datatypes in hive are similar with a few more on the list. The thing to note about 

these data types is that all of them with the exception of the character types, force 

you into using an atomic value in each part of a row.  

The character types allow lists of words or unstructured text but that is an 

exception and good design dictates that you should be aware of this and plan your 

tables carefully, whether you keep your character columns atomic or not. The 

additional complex types in Impala, also supported in hive are these. The array data 

type let's you put multiple values of one tie into a column. For example, with the 

array type, the movie table might look like this. In this example, the actor's column 

is an array of names and the show time's column is an array of time.  

A normalized design for this data might look like this. In these normalized tables, 

the primary key for actor and movie and movie show time is a composite containing 

both columns of the table. The table design with the array columns is a deliberately 

denormalized design. In fact array columns are examples of repeating groups in the 

design and with repeating groups, the title is not even in first normal form.  

A map column is also a repeating group design except that each item in the column 

is a key value pair. Look at this table. The map data type for the phone's column 

allows the table to conveniently store any number of keyed phone numbers for one 

customer in a single row. One potential benefit of these complex data types is that 

they allow your selects to easily fetch all the contents from one table at runtime 

rather than having to compute results from multiple tables and this can result in 

improved query time.  

The struct data type, also stores multiple values in one column and you will learn 

more about its use with hands-on practice in a later course in this specialization. 

I've introduced only the core basic statements of SQL throughout this course. There 

are a number of finer details that are specific to the SQL dialects used by Hive and 



Impala and it is like that with any SQL dialect. You will learn these details as you 

practice Hive SQL and Impala SQL in the other courses of this specialization. 

 

 



 

4.10 WHERE TO STORE BIG DATA 

 

 



The Internet and modern computing have produced explosive growth in data 

volumes, but also new ways to store data. When storing petabytes of data for 

analysis, you have some options, and keep in mind is not just that you want to store 

your data, you also want to analyze it to gain new insight.  

Though you really have related decisions to make about the storage and processing 

of your big data. Some organizations physically store their data on servers in their 

own data centers. A server is simply a computer that provides services to other 

computers through a network. Storing data on servers in your own data center is 

called on-premises or on-prem storage. By the way, you might read about on-

premise storage, this is a mistake in word usage. If you look up the words in a 

dictionary, you will see that premises and premise are two different words with 

different meanings, and on-premises is the right term in this case.  

The first enterprises to store large volumes of data stored it on-prem because there 

was no other choice. They provisioned hundreds or thousands of servers with a 

dedicated network to join the servers together into a cluster, thus cluster 

configurations remain useful today. And for a typical set-up, each server in the 

cluster contributes both data storage with a set of disk drives and processing 

capacity with CPUs and random access memory. Within on-premise cluster like this, 

you can increase storage and computing capacity together by adding more servers, 

also called node or host to the cluster.  

Today, you can store your data just as well using cloud services such as Amazon 

Web Services, Microsoft Azure, or Google Cloud Platform. These services let 

companies choose to keep storage and computing power together, or keep data in 

cloud storage and use and pay for computing power only when needed, or you can 

take a hybrid approach maintaining some data on-premises and some data in the 

cloud.  

Cloud storage is attractive for many cases because it lets you start quickly, start 

small and easily increase storage as your data grows. With the separation of storage 

and computing in the cloud, you can support occasional processing needs with 

transient compute clusters that are elastic, meaning that they are sized on the fly 

to support the data processing involved and the response time you need at the 

time. This is especially attractive for intermittent or bursty workloads. You can 

even have different teams that access the same shared storage with different 

optimally-sized compute clusters. Cloud providers let you pay for storage and 

processing only as you use it. For cluster on-premises, you can start with a test 



cluster of a few virtual machines or repurpose servers, but an enterprise grade 

cluster will usually involve dedicated hardware, needing major investment in real 

estate, equipment and personnel, and companies usually need long review times 

to make these investment decisions. Think of it this way. Suppose you need a 

means of transport like a car, or a truck, or a scooter, would you rather rent or buy?  

If you plan to use the vehicle only one or two times a month, it is cheaper and 

probably more convenient for you to rent. But if you need the vehicle nearly every 

day for several years, then you most likely want to buy. Even though this means a 

higher initial cost and the extra effort of keeping and maintaining your vehicle, 

owning will cost you far less than renting in the long run. Of course, you could 

choose to rent even with constant use. This would let you change your type or style 

of vehicle with very little trouble, but you would pay a premium cost for this 

flexibility. It is similar with cloud or on-prem clusters.  

In the cloud, you rent storage and computing power from providers who take care 

of hardware and a mass of other details for you. They give you flexibility and 

convenience at a cost that makes the most sense for light usage. On the other hand, 

a data warehouse that will be used for more or two or more than two or three years 

with many users with ongoing analytic workloads can be more economical overall 

if your organization chooses to host it on-prem.  

However, many organizations have approval and accounting processes that make 

it difficult to build or expand an on-prem data center. Datacenter investments are 

considered capital expenditures, whereas cloud service costs are typically 

considered operating expenditures. Capital expenditures are long-term 

investments, though they're subject to a lot of scrutiny and accountants are 

required to amortize the costs over multiple years. Operating expenditures are 

short-term decisions with less risk though they're usually subject to less scrutiny 

and fewer accounting requirements.  

For this reason, many companies use cloud services even when the costs are higher. 

Midsize and larger enterprises may well take a hybrid approach to storage and 

computing because they have data of very different sorts, some generated online 

and some in-house, as well as a mix of transient and sustain compute needs. After 

all you may want to own a scooter, but rent a truck on occasion to do some hauling. 

With evolving offerings in hardware, software, and service providers, you can 

expect to see a growing variety of choices including new hybrid choices in the 



future. Unfortunately, analytic tools like Apache Hive and Apache Impala work 

equally well with data on-premises or in the cloud. 

4.11 COUPLING OF DATA AND METADATA 

 

In a conventional RDBMS, when you issue a create table statement to create a new 

table in a database, the system handles all the implementation details. The system 

checks any foreign key constraints to make sure that they are legal. Sets up files 

needed to store the table, adds index files for any unique column constraints, and 

then records all these details about your table, in a special part of the database 

called the data dictionary.  

Now, you can proceed to insert rows in your table, and the database system stores 

content in all the right files, to durably store your data and then uses those files to 

handle your subsequent select statements reliably, and correctly. It's great that the 

system lets you think in SQL, without having to worry about any of the lower level 

details. However, whether you like it or not, the system forces you to always think 

in SQL. Data storage is encapsulated by your database software. Other programs 



cannot access the data storage directly. File access is usually blocked to any 

program other than the database software.  

Even with access, files are usually of a proprietary format that is not usable, except 

through the database software. The database system keeps the data dictionary, 

which is a set of internally maintain tables about your tables. With table names, 

column names, and properties, constraint definitions, and so forth. The data 

dictionary tables, record your table definitions.  

So they comprise, data about your data, or metadata. The data dictionary is tightly 

coupled with your tables. It is always kept in exact alignment, accurately describing 

the tables you create. If you drop a table, the rows regarding that table in the data 

dictionary tables are automatically deleted. If you alter a table, the pertinent rows 

in the data dictionary are updated, and so forth. Through the mechanism, other 

relational database software, together with the encapsulation of file storage, and 

the data dictionary tightly coupled to data, RDBMSs provide SQL as the only way to 

access data in their databases.  

In contrast, the data stores and big data systems, can have SQL as one way to access 

data, with other forms of access also available. The data store in your big data 

system can be called a data lake, or data reservoir, or enterprise data hub. All of 

these are terms you may see often. The data lake can retain large varieties of data 

of all sorts. Some contents may be structured, and so easily usable by a SQL engine 

like Hive or Impala, and some not structure. While the traditional RDBMS only 

supports structured data with access only through SQL, a big data system supports 

a variety of data, and also a variety of ways to access, and use the data. Some 



programs read and write content directly to the data lake, using direct file access.  

These can be simple programs written in languages like Python, or Java, or C or 

large scale distributed applications, like MapReduce, or Spark programs. These 

programs can access files or potentially, any format and type, and are suitable for 

working with structured or unstructured data.  

In order to use SQL on your data, you create table definitions in a metastore, which, 

for Hive and Impala, happens to be called the Hive Metastore, because of its origin 

as a part of Hive. The metastore takes the place of the data dictionary in an RDBMS. 

It contains table definitions that enable table like access to some of the contents in 

the data lake. The metastore is not kept directly in the data lake, but alongside it. 

Because of the way big data systems, separate your data, and metadata, you can 

create table definitions that are loosely coupled to files. When your data and 

metadata are loosely coupled, your table definitions are not necessarily in lockstep 

with all your data. In fact, some files may reside in the data lake without any 

information about them in the metastore at all. The table definitions also do not 

govern the file contents, but instead provide schema on read to let you view the 

files in table form.  

This lesser data lake accept files of any sort, and you can still analyze your file 

contents with the SQL engine like Impala or Hive, using SQL statements like those 

familiar to so many other systems. Impala and Hive share the one metastore, to 



find table and column definitions, and then access files in the data lake on your 

behalf, when you issue SQL statements. Other applications like Spark programs, can 

optionally consult the metastore to find out about table definitions for data, but 

this is not required in order to access the data. A single file may be used by an 

Impala query, a Hive query, a general purpose Spark program, or any number of 

other programs. This is especially true, when the file has structured, or semi-

structured contents. 

WEEK 5 

Learning Objectives 

● Install a working environment that can be used for hands-on exercises with 

big data 

● List and describe existing databases, tables, and data in a big data system 

● (Honors) Answer questions about Cloudera's Data Analyst certification using 

the web page 

 

To use the hands-on environment for this course, you need to download and install 

a virtual machine (supplied by Cloudera) and the software on which to run it. Before 



continuing, be sure that you have access to a computer that meets the following 

hardware and software requirements. 

5.1 HARDWARE AND SOFTWARE REQUIREMENTS 

●   Windows, macOS, or Linux operating system (iPads and Android tablets will not 

work) 

●   64-bit operating system (32-bit operating systems will not work) 

●   8 GB RAM or more 

●   25GB free disk space or more 

●   Intel VT-x or AMD-V virtualization support enabled (on Mac computers with 

Intel processors, this is always enabled; on Windows and Linux computers, you 

might need to enable it in the BIOS) 

●   For Windows XP computers only: You must have an unzip utility such as 7-Zip or 

WinZip installed (Windows XP’s built-in unzip utility will not work) 

5.2 INSTALLING THE ENVIRONMENT 

Installing the hands-on environment has three major steps: First, download and 

install the software that runs the virtual machine (VM)—there are two choices, as 

noted below. Then download the VM that you will be using. Finally, install the VM. 

You can then adjust your settings as needed. 

The VM can run using products from VMware or Oracle’s VirtualBox. For Mac 

systems, VirtualBox is free but VMware requires a license; for other systems, free 

versions are available for both. The VM tends to run a bit faster on VMware, so we 

recommend choosing VMware if you can. 

NOTE: These instructions appear in each of the courses in this specialization. If you 

have already installed the VM for a previous course, you do not need to reinstall. If 

something goes wrong with your VM, you can delete it and reinstall, but any work 

you have done inside the VM will be lost. 

5.3 A. DOWNLOAD AND INSTALL THE SOFTWARE 

Choose the software you wish to use, VMware or VirtualBox, and follow the 

appropriate instructions. 

VMware 



For Windows and Linux systems, download the VMware Workstation Player. For 

Mac systems, download VMware Fusion. Open the downloaded file and following 

the instructions provided, but please decline all updates and upgrades. 

For Windows and Linux: 

●   Decline the upgrade to the Pro version. The free version is sufficient for this 

course and this specialization. 

●   Decline to enter a license key. The license allows you to use VMware Player for 

free without a license key as long as it's for non-commercial purposes. 

VirtualBox 

On the VirtualBox downloads page, click to download the platform package for the 

system you are using. Open the downloaded file and follow the instructions 

provided, but please note: The installer might prompt you to accept that the 

network may be disconnected during the installation, and to install USB device 

software. Accept both of these prompts. 

B. Download the VM 

We have created a VM specially for this course. You need to download this VM by 

clicking one of the following links, depending on which software you are using 

(VMware or VirtualBox). These two VMs themselves are identical, and they include 

the data and the applications you will need for this course. The only difference 

between them is which software they run in (VMware or VirtualBox). 

NOTE:The VM is large and might take a long time to download. 

●   VirtualBox VM 

●   VMware VM 

Open the downloaded file to unzip it. You will now have a folder with several files 

within it. 

We recommend that you also keep the downloaded zip file in case you need to 

reinstall a fresh copy of the VM. You can also come back here and download it again 

if needed. 

C. Install and Start the VM 



Follow the appropriate instructions below depending on which software you chose 

to use. 

VMware 

To start the VM in VMware: 

1. Open the VMware software. 

2. In the File menu, click Open. (You might need to click Player to see to the File 

menu.) 

3. Navigate to the directory where you unzipped the VM file. 

4. Select the file named Cloudera-Training-CourseraDataAnalyst-VM-

cdh5.13.3b.vmxand click Open. 

5. The VM will appear in the list of virtual machines in the VMware window. (A 

new window might also pop displaying the VM.) 

6. With the VM selected (or in the window that popped up), click the Play 

button to start the VM. 

7. When the VM starts up, VMware might display prompts to update VMware 

Tools. Click No or Never to decline these updates. 

8. Move the VM window and resize it by dragging the corners as needed. 

VirtualBox 

To install and start the VM in VirtualBox:  

1. Open the VirtualBox software. 

2. In the File menu, click Import Appliance… 

3. Under Appliance to import, click the folder icon and navigate to the directory 

where you unzipped the VM file. 

4. Select the file named Cloudera-Training-CourseraDataAnalyst-VM-

cdh5.13.3.ovf and click Open. 

5. If you see a Continue button, click it. 

6. Under Appliance settings, do not make any changes. 



7. Click Import. 

8. Wait for the import process to finish. 

9. The VM will appear in the left panel of the VirtualBox window. Double click 

it to start, then give it a few minutes to fully start. 

10. When the VM starts up, VirtualBox will display messages about keyboard 

capture and mouse pointer capture. Click x to dismiss these messages. 

11. Move the VM window and resize it by dragging the corners as needed. 

12. In the View menu, adjust the scale factor to make the VM display as desired. 

For example, if you are using a Mac with a Retina screen, select View > 

Virtual Screen 1 > Resize to 200% (autoscaled output). 

D. Connect the VM to the Internet 

First, ensure that your computer is connected to the internet. Then, in the upper 

right corner of the VM, look for an icon like this: 

 

If the icon appears just like in this image above, then the VM should already be 

connected to the internet. 

But if the icon appears with a red x, then the VM is not yet connected to the 

internet: 

 

If you see this icon with the red x, click the icon and choose Auto Ethernet to 

connect to the internet. 

Changing Settings on the VM 

You can change the settings inside your VM to your liking using System > 

Preferences. 

A common setting to change is the keyboard. The default keyboard layout is English 

(US). If you use a different keyboard, you will need to set it in the VM, even if it is 

already set on your computer. Use System > Preferences > Keyboard to add 

another keyboard layout and set it as the default. After setting the keyboard to 

another default, you can remove the English (US) keyboard, if you like. 



Logging into Hue 

Throughout this course, you will use a browser-based interface called Hue. Hue is 

installed in the VM; although it's accessed using a web browser, you don't need to 

be connected to the internet to use most commands on Hue.  

To log into Hue: 

1. In the VM, open Firefox by clicking the Firefox Web Browser icon in the menu 

bar.. 

2. Click the Hue bookmark or go to http://localhost:8888/hue/home. (For this 

training, you must use the browser within the VM. Do not try to use the 

browser outside the VM on your computer.) 

3. Sign in using username training and password training. You can agree to 

remembering your username and password if you like. You also can go 

through the tour of Hue 4.0 if you like, but these courses introduce all the 

parts of Hue that you will need, when you need them, so you can click the X 

and ignore the tour. 

Troubleshooting the VM 

 

As you work with the VM, you might from time to time come up against some odd 

issues. Please consult this document as needed to help you troubleshoot and 

resolve the issues.  

If you have worked through all the suggestions here and still have trouble, please 

reach out to your fellow students or the instructors through the forums for this 

course. Help your fellow students as you can, but your instructors will do their best 

to help you as soon as possible. 

Please try to resolve the issues on your own first. We understand how frustrating 

it can be, but you'll learn more if you try it on your own!  

Note: Many issues can be solved by restarting the VM, so this should be the first 

thing you try. Restart the machine by clicking System > Shut Down from the menu 

bar, then click Restart. (Do not just pause or suspend the VM or quit the software 

running it.) Many times the issue is a service (such as Hive, Impala, Hue, HDFS, or 



one of the underlying services those rely on) going down, and restarting the 

machine will restart all these services. 

VM CPU and RAM Requirements 

The VM for this class is designed to use one processor core (CPU core) and 4GB 

RAM. Reducing the amount of RAM to below 4GB is not recommended and is likely 

to cause failures when running some queries on large tables. Increasing the amount 

of RAM to some amount greater than 4GB is unnecessary, but it will not cause 

problems so long as your computer has sufficient RAM to allow it. You should 

always leave at least about 4GB available for the operating system outside the VM 

to use. For example, if your computer has 8GB total ram, you should never 

configure the VM to use more than about 4GB. If your computer has 16GB total 

RAM, you should never configure the VM to use more than about 12GB. 

However, you should not increase the number of processor cores (CPU cores) used 

by the VM. If you do increase the number of processor cores used by the VM, then 

it is absolutely necessary to also increase the amount of RAM. For example, with 

two processor cores, you should use at least 6GB RAM. Increasing the number of 

processor cores without also increasing the amount of RAM is likely to cause 

failures. 

VM Is Slow 

If the VM is running slowly, it might be that you are using too many resources for 

the memory available to the VM. If you're using Hue, first try closing the browser 

and reopening it. This sometimes clears out the resources. 

If that doesn't help, then in the VM, go to System> About this Computer> 

Resources to see how much CPU and memory (RAM) is being used.  

If your RAM usage is high, close all applications and browser windows or tabs 

except the one you're using. Avoid having Hue open in multiple browser windows 

or tabs, because this can use a lot of RAM. 

Services Not Available 

Occasionally you might find that a service or process on the VM has failed and 

needs restarting. The simplest way to do this is to restart the VM. See the note 

above the table of contents, above. 

Errors in Hue 



Clicking around in certain parts of Hue that are not part of the exercises might result 

in error messages. The Job Browser is one such example. Clicking it might show a 

red popup layer in the browser with an error message similar to this: 

HTTPConnectionPool(host=’localhost’, port=11000): Max retries exceeded 

with url: /oozie/v1/jobs?len=100&doAs=training&filter=user%3Dtraining 

%3Bstartcreatedtime%3D-7d&user.name=hue&offset=1&timezone=America 

%2FLos_Angeles&jobtype=wf (Caused by 

NewConnectionError(’&lt;requests.packages.urllib3.connection.HTTPConnectio

n object at 0x7f4f1c53f090&gt;: Failed to establish a new connection: [Errno 113] 

No route to host’,))       

This occurs because the Job Browser depends on a component called Oozie, which 

we do not include in the VM. Oozie is not used in any exercises for this course; 

installing it would make the VM larger and require more memory to run, which 

would reduce performance. 

Note that the job browser is not the only place where errors like this might occur. 

Other areas of Hue might yield errors related to other components that have not 

been installed. In general, we have tested that the exercises related to Hue work 

without error. If you deviate from the exercise instructions, then you might 

encounter errors such as the one described above. 

5.4 DIFFICULTY CONNECTING TO BEELINE 

Your first step when a command doesn't work as expected should always be to 

check carefully for typos! Be sure the command you are using to start Beeline is  

beeline -u jdbc:hive2://localhost:10000 

It's very easy to type jbdc instead of jdbc, for example, and easy to overlook that 

typo. 

It's also easy to use the wrong number of 0s at the end. (There should be four 0s.) 

5.5 DIFFICULTY CONNECTING TO IMPALA SHELL 

Your first step when a command doesn't work as expected should always be to 

check carefully for typos! Be sure the command you are using to start Impala Shell 

is  

impala-shell 



It's very easy to forget to use a dash and instead use a space, for example. 

5.6 DIFFICULTY CONNECTING FOR S3 OR OTHER INTERNET SERVICES 

Some commands (such as any commands that interact with S3, the cloud service 

we're using for these courses) require that the VM itself be connected to the 

internet. In the upper right corner, find one of these icons to determine the 

connection state and what you should do: 

 

The VM is connected; if there is a problem, check your computer's connection 

rather than the VM's connection. 

 

(Animated) The VM is trying to connect; give it a moment until it resolves to one of 

the other two icons. 

 

The VM is disconnected; click the icon and choose Auto Ethernet to reconnect. If 

the problem persists even after you reconnect the network, then restart the VM. 

5.7 APACHE HIVE 

 

I've heard it said that HiveQL, the SQL dialect of Apache Hive is not really SQL, but 

is MapReduce for people who know SQL. The statement is a little harsh and 

provocative, but it does make a point. Hive was first developed for clusters that at 

the time primarily ran the core components of Apache Hadoop, HDFS for files and 

MapReduce for data processing.  

Here's a quick review. MapReduce programs read and process data using multiple 

distributed tasks that run in parallel across minicomputers. A MapReduce program 

can, if needed shuffle intermediate results into some new grouping for another 

stage of distributed tasks. This illustration shows three distributive processing 

stages with two shuffles. But a Map Reduce program can contain one stage or any 

number of stages, which shuffles interpose between the stages. Finally, a Map 

Reduce program may write a potentially massive result back to storage, using 

multiple parallel write operations as shown here.  



Or, it may deliver a modest result to a display for you to examine. Hive adds a meta 

store describing some groups of files stored in the cluster as tables and describing 

fills in the file records as table columns. With this enhancement to the cluster data 

with table definitions, analysts familiar with SQL can write select statements.  

Hive automatically translates a select into a suitable MapReduce program. Hive 

can translate any SQL select statement you can write into MapReduce. Using Hive, 

you cannot process all possible data, but you can process all data that has suitable 

structure. You cannot write all analytic programs, just those that can be expressed 

in SQL. However, that capability, SQL statements against big data with structure 

enables analysts to cover a great portion of all big data processing needs.  

At one time, Facebook even publicly stated that fully 80 percent of all their big data 

processing jobs were Hive queries. From its beginning, Hive has translated SQL 

statements into MapReduce programs. Since late 2015, Hive has had the option 

to produce Apache Spark programs instead of MapReduce. Spark programs 

operate essentially in just the same way as I've described for MapReduce. In fact, 

I'm using the terms stage and shuffle from spark to properly describe both Map 

Reduce and spark.  

There are differences, in that Spark programs use more memory and reduce the 

use of disk drive for temporary storage, and so can improve response times for 

long running programs compared to the equivalent MapReduce programs. Hive 

remains an excellent choice when you want to process large amounts of data in a 

cluster using SQL, and especially when the data you produce will be large as well, 

and you want to store the result back in your cluster. For instance, you may have a 

table with a few billion rows and you want to produce a new scrubs copy of the 

table, with names converted to uppercase, and date and time formats made 

consistent, and rows with invalid foreign key references removed.  

This kind of data transformation is a common step in regular ETL pipelines for data 

warehouses. You can write a command for this in HiveQL easily and the cluster will 

run the resulting program reliably, whether it takes minutes, hours or even days to 

complete. Hive distributed programs are fault tolerant. Even if a worker machine 

in the cluster fails during the program run, the cluster will automatically redo any 

work lost using the remaining workers.  



 

5.8 APACHE IMPALA 

 

Hive translates SQL statements into programs in MapReduce or Spark to general 

purpose systems for big data. In contrast, Apache Impala is built from the ground 

up as a distributed SQL engine for big data. The concepts and design behind 

Impala, originated with Google when they realized they needed to build a high 

speed query system, specifically for big data. Google published a paper about their 

project called Google F1, in 2012. Marcel Kornacker, the technical lead on the F1 

project, joined Cloudera to create similar functionality in open source software.  

Cloudera contributed Impala to the Apache Software Foundation, and Impala 

became a top level Apache project in November 2017. Impala runs as a collection 

of Impala daemons running in a cluster. The word D-A-E-M-O-N can be pronounced 

damon or demon, either way. I find it more fun to say daemon. A daemon is a 

continuously running server program that awaits and serves requests as they 

appear. A web server, for example, is a kind of daemon. This diagram shows how 

Impala performs your interactive select statements. Your client connects to any 

Impala daemon in the cluster, and sends it your select statement. This daemon 



coordinates with the other Impala daemons, and collectively, these daemons read 

and process the data needed to perform your query.  

Finally, the daemon you contacted gathers the results, and returns them to your 

client program for display. Impala has a long list of special internal tricks, designed 

to process your big data queries as quickly as possible. An Impala query can run 10 

or even 50 times faster than the same query in Hive.  

And the performance differences are even more striking with multiple analysts 

querying your cluster data at the same time. If, as will happen on occasion, a worker 

machine in the cluster fails while your Impala query is running. Your current 

program will receive an exception, and you will need to restart your query. This is 

a principle difference between Hive and Impala. Unlike Hive, which gives you strong 

assurances that your queries will complete, Impala always opts for speed as a 

priority, even a priority over fault tolerance. By the way, this diagram is slightly 

simplified, here is a more detailed version. There are a couple of other Impala 

processes called the catalogue service and states tour, that run in support of the 

Impala daemons. These processes have the sole duties of consulting the Hive 

metastore and data file storage, keeping the Impala demons informed with this 

metadata.  

The SQL dialects, Impala SQL, and hive QL, are about 95% the same, so you can run 

most queries using either Hive or Impala. As a general rule, when you need to 

produce a new large data setting or cluster, Hive is a good choice for its reliability 

and fault tolerance. Requires that analyze your big data but return a small set for 

you to examine, Impala is the better high-speed choice. Impala is also good for 

business intelligence programmes or dashboards that query your cluster. It's no 

surprise that I had a large corporate customer say, we use Hive to prepare our 

data, and Impala to serve our data to users.  



 

 

5.9 EXPLORING STRUCTURED DATA IN HUE 

 

This is an exercise environment like the one you will use this week and for the 

remainder of this specialization. It contains all the software and data and 

everything you need for this exercise and for the remainder of the courses in this 

specialization. It's a simple Linux desktop, a few things on the desktop, and some 



useful invocations in the menu bar that we'll use; a web browser, a command line 

prompt, and a text editor, all useful in this specialization. So, here I am invoking a 

web browser.  

If you look on the lower right, you can see that you can click to invoke a different 

workspace or different desktop so you can switch between workspaces or desktops 

as you wish. Now, I'm going to invoke Hue, an open source project in our big data 

environment that acts as a web page over a lot of other useful applications like 

Impala and Hive. I'll log on with user training password training, and I'll let the 

browser remember that if I wish. So Hue comes up, and it comes up with a little 

hint window that I can dismiss if I wish.  

There's the main Hue web page. It has a menu bar across the top with a few useful 

indications that the menu on the left, a drop list, a search window, and a few other 

invocations on the right. There's a quick browse area on the left that I can hide or 

display. I'll leave that displayed. There's a main application area on the right. Here 

in the quick browse area, I'm looking at database-type native sources, so table-like 

data sources including some databases. I'll go to the Impala data source.  

There you can see Impala has already supplied with five databases that I can use; 

the default database which is a collection of related tables; customers, employees, 

and so on, the fly database, a different set of tables, and other databases. So a 

database is it's just its own little collection of related tables. I want to create a 

report on the default database, but first, I'm going to perform an important action 

for Impala. You see that little refresh icon here? I'm going to click that, and choose 

the bottom item in the radio list there, and click refresh. This causes Impala to 

synchronize all of its information about these tables and databases with what is in 

the big data store, so everything is lined up.  

Now, going back to the default database, and I'll also choose in the menu, browsers 

and the table browser. So then the table browser comes up on the right. It's 

redundant with the quick browser on the left. I'm going to have both of those open 

for my use. So you can see I can navigate around different databases, different 

tables. There I can see in the path at the top, I'm in databases default, and there's 

the list of the five tables in that database; customers, employees, offices. There's a 

bit more information on the screen that I can ignore. Now, I'm opening a text editor 

because I want to create a database overview document about the default 

database. I'll call it "Database Overview." I'll sign it and date it. This is going to be 

useful for me later. Maybe I'll come back in six months and start working with this 



database. It's good to know who wrote it and when it was done. So I'll name the 

database default.  

This is what the report is going to be about. I want to start by listing the tables in 

the database. There's a customers' table, employees', and others. I can type those 

or I can just select and copy and paste into the text document, and then clean up 

the layout a little bit. Now, I want to get some overview information about each 

table individually. So I'll start with the first table, customers. I can click on the 

customers' table in the table browser, and I'll see some information about that 

table. Again, there's some information I can skip over for now, some properties, 

but what I really care about are the two things you see here; columns, that's the 

names of the columns and their data types, and a sample of a few rows in the table.  

This is just so that I can start to intuitively get to know what's in that table. I can 

select, and copy, and paste that information into my text document. This is a little 

bit of a messy extra information and alignment. I'll clean up the document a little 

bit. So there I have my column names and their datatypes, and here's some sample 

rows with column headings and three sample rows. Now I want to go to my 

document and add some column comments where I think those are suitable. So I'm 

going to write that the cust_id column is customer ID, and the code PK says that I 

think that column is a primary key unique for each row in the table, and that the 

country column is a two-letter country code.  

Name is pretty much self-evident. If I wanted to make a note, I could, but I'll leave 

it for now. That's my overview of the customers table. I'll go on to the employees 

table, put a heading in the document, go back to the table browser, go to the 

employees table, and select, and copy, and paste, and clean up. I'll make a few 

comments. The empl_id column is a numeric employee id, and maybe make 

another comment, the salary. There's a number there, but the unit of what the 

salary is is not known. So I'll make a note there, unknown units. Maybe that's US 

dollars. But I might want to go back to the original data source and confirm with 

the originator of the data what that unit is. I'm going to come back to the empl_id 

and office_id columns later on.  

I'll leave that for now, and on to create a summary of the offices table. That's the 

basic cleaned up data from the office's table. I'm going to go on and create the 

summary of the order's table. But wait, let me put my comments on the office's 

table. So office_id is I think a primary key. I can put the comment it's an office_id 

or maybe say that's obvious. I might note that this state province column is a state 



or province depending on what that is. Remembering again here that country is a 

two-letter country code. Now on to create a summary of the orders table. I'll put 

some comments on the orders table.  

The order_id column is I believe a primary key. The cust_id column is a foreign key. 

I can go over to the Quick Browser area, look at the column names in the other 

tables, expand customers and employees, and it stands to reason that the cust_id 

column in orders refers to the customers table, its cust_id column. So table 

name.column name. So orders.cust_id references, customers.cust_id. You can see 

up here looking at a sample of the data for customers cust_id is a simple letter. 

Those letters for cust_id appear in the sample data for orders cust_id. Similarly, 

empl_id is a foreign key that references employees.empl_id.  

We made it easy here by using common column names between the two tables. 

Total, that's an order total, and I'll make a note again, unknown units. I don't know 

what monetary unit that might be, might make a note maybe it's US dollars, maybe 

not, I'm not sure. That's the orders table. Finally, the salary grades table. While I'm 

copying and pasting this, I'll talk about it. This is what I would call a lookup table. It 

will only have just a few rows of some static information that I don't really expect 

to change very much. But that has useful information that I can put into my 

database to go with other data that might be changing more often.  

What it does is that it shows ranges of salaries, and maps those two salary grades. 

So looking at the data, you can see that grade one is a salary grade with a minimum 

salary of 10,000, and a maximum salary of 19,999, and grade two is 20,000 up to 

but not including 30,000 and so on. You see these three sample rows. So then for 

the comment for min_salary, that's a minimum salary for a certain grade. Grade 

one is minimum salary of 10,000, maximum to 19,999. I'll make a note, and it's not 

really a foreign key, is not an exact value that will occur exactly as such in the 

employee salary. But that I'm giving ranges.  

You'll learn later how to combine tables with information like this, where values 

don't occur exactly. But I'm just noting that's a minimum salary for the range, see 

employees.salary column, so on for the max salary column. Though, so both are the 

table in the database. I'm going to go to the top and add a couple of important 

notes to my database overview document. Note one is important. All the 

comments that I'm making, the notes that I'm making about these columns are not 

authoritative. They're my estimates of what I see on initially examining these 



tables, just looking at some sample rows and the table definitions, and I'm putting 

my little short notes about the columns, they're not authoritative.  

So I'm pointing that out. This is not from the original data source where these 

descriptions are coming. At a later time, I may be able to interview the data source 

and come up with more authoritative information about these columns, like the 

monetary units for example. My other note is this, the primary key, foreign key, 

and references notes that I'm making are not actual database constraints. Because 

an impala Data-store doesn't have database constraints rigorously enforced in the 

database, the way a real relational database would do. Instead, this is relational 

like, and I'm really describing data relationships than I'm assuming based on the 

data that I see. If my maintenance of this data is disciplined, then those 

relationships will hold.  

So there's my report, my database overview document, and that's what I wanted 

to produce for an overview of this database. Going back to the employees table 

and remembering that empl_id acts like a primary key, and office_id in the 

employees table is a foreign key referencing offices.office_id. At least it behaves 

like a foreign key in the data. So this whole report took about 20 minutes to 

produce, and I think that was time well spent beginning to get to know the data. I'll 

save this report in a document. I'll give it a decent name. I'll save it on the desktop 

in this simple case, and there's that report.  

Now, if I have DDL, that's data definition authority on these databases and tables, 

then I can actually add comments using you, where the table browser says 

comment, where I can click and add a comment as I'm doing here. Noting where I 

think something is a primary key, simple notes about columns. Maybe not a note 

about every column, but notes where I think they're called for. I can put a comment 

on the table, and I'll put a short description of the table, these are international 

customers for some company that this database refers to. There's comments on 

the customers table.  

I'll go on to the next table, and describing all the tables. Now, I can use a desktop 

utility and just take a screen grab of the tables and their descriptions directly out 

of here, and go to the customers table, and take a screenshot of those columns 

with their descriptions and the sample data from Hue. I can create similar 

screenshots for all the other tables, and put those into a nice pretty looking 

document using Word, or Google Docs, or something like that. Then, here's the 

original text document of a database overview, or if I have DDL access to the tables, 



I could go in and create comments on the tables and the columns in Hue, and then 

use screenshots and create a prettier document. Whether the document is this text 

document, or the prettier document, does not matter as much as the information 

in the document. Is the information good? Is information clear? The database 

overview is the important thing. This exercise of creating it is the beginning of my 

Exploratory Data Analysis, EDA database, and will be useful going forward.  

 

5.10 WELCOME TO THE HONORS TRACK 

 

In this course and throughout this specialization, you'll find the optional honors 

track as a focus on one concrete goal. Preparing you to become a Cloudera certified 

associate data analyst. Their certification is a separate credential from the ones 

you receive from Coursera. It is a professional certification and meant to verify your 

ability as a data analyst of big data. We cannot guarantee that if you go through 

this Coursera training, you will pass the Cloudera certification. Of course, we can't 

guarantee that. But we will help you to develop the variabilities that the exam is 

designed to test.  

We'll give you practice with these skills you'll need to demonstrate, and familiarity 

with the resources you'll use both in the exam and in your professional work. The 

rest is up to you. We have designed this specialization and the certification with the 

same ultimate goal to help you build proven mastery of data analysis in the big 

data world, and to help organizations of all sorts to find people such as yourself for 

this work. For this week, I'm assigning you the task to read Cloudera's webpage on 

the certification program. Because that contains the core information you need to 

enroll and take the examination. I'll test you on that page because I want you to be 

secure in knowing how you will go about the certification process.  

The Honors Track of this specialization focuses on the knowledge and skills you 

need to become a Cloudera Certified Data Analyst. If you wish to pursue this 

certification, you should familiarize yourself with the certification examination 

process. To that end, you will read the main web pages about the certification, and 

will answer questions about how Cloudera's certification works. 

Study the public web pages about 

● Cloudera's certification program 



● Cloudera's primary certification exam for data analyst 

● The certification frequently asked questions (FAQ) page 

You may refer to these pages as you answer the quiz questions. 

(Although the questions in this assessment are answered in the public web pages, 

you can learn more about how the certification exams work by taking Cloudera's 

free OnDemand course, CertPrep 101: Preparing for Cloudera Certification. You 

may find this short course—consisting of about 1 hour of video—especially useful 

when you get closer to taking the certification exam.) 

If you're watching this video, then I assume you've read the web-page about 

Cloudera certification process, and you've verified your understanding of the web-

page by taking our quiz. I'm glad you're interested in Cloudera certification. The 

honors track in the rest of this specialization, will give you the extra practice with 

the tools and experience with the documentation, so that you'll be largely self-

sufficient and well-qualified to work as a big data analyst. I hope you'll then go on 

to take and pass the exam, and I look forward to seeing you on the roles of Cloudera 

certified associate data analysts.  


