
WEEK 5 HONORS 
LEARNING OBJECTIVES 

 Use views to simplify queries 
 Identify and use some common strategies for examining and optimizing 

query performance 
 Use partitions to organize data and improve query performance 
 Create and query tables with complex data structures when appropriate 
 Describe the difference between storage engines and file systems 

 

SIMPLIFYING QUERIES WITH VIEWS 

 
What to Do When Queries Are Too Complex  
 
Anyone who has written SQL queries for real-world applications should be 
familiar with how lengthy and complex these queries can be. For example, the 
query shown here combines data from the flights, airlines, and planes tables to 
show information about the kinds of aircraft flying into or out of a particular 
airport. This query is not even really that long by many standards, but still working 
with queries like this, can become cumbersome. With the example here, it could 
be that you need to repeatedly enter the same query, substituting only the origin 
and dest values in the where clause. Using views can help you to simplify complex 
queries especially ones that you need to run repeatedly. A view is like a saved 
query which can be used as if it were a table itself. You can hide the complex part 
of the query in the definition of the view, allowing you to run a simpler query 
against that view each time. Views can be useful not only for convenience but 
also for security. For example, if a table contains sensitive information, you can 
restrict access to the table and create a view that exposes only the rows and 
columns of the table that are not sensitive. In this lesson, you'll learn how to 
create, query, modify, and remove views, and you'll learn about the limitations of 
views in Hive and Impala.  
  



 

CREATING AND QUERYING VIEWS 

 
A view is a saved query, which then can be queried as if it were a table. The 
syntax for creating a view is the same as using CREATE TABLE AS SELECT (CTAS), 
but with VIEW instead of TABLE: 
    CREATE VIEW viewname AS 
        SELECT col1, col2, ... FROM tablename … ; 
Views appear in lists of the tables within a database (in Hue interfaces and in the 
result of SHOW TABLES) exactly as if they were tables. 
For example, this query to show information about the aircraft flying into or out 
of a particular airport might be something you want to explore for different 
airports: 
    SELECT f.carrier, name, origin,  
            dest, type, manufacturer, model, 
            p.year, engines, seats, engine 
        FROM flights f 
            JOIN airlines a 
                ON (f.carrier = a.carrier) 
            JOIN planes p  
                ON (f.tailnum = p.tailnum) 
        WHERE origin='BOS' OR dest='BOS'; 
 
Rather than running this every time you want to look at a different airport, you 
could save a view with all the information for all airports: 
 
    CREATE VIEW craft_information AS 
        SELECT f.carrier, name, origin,  
                dest, type, manufacturer, model, 
                p.year, engines, seats, engine 
            FROM flights f 
            JOIN airlines a 
                ON (f.carrier = a.carrier) 
            JOIN planes p  
                ON (f.tailnum = p.tailnum); 
 
Then you can query the view: 



    SELECT * FROM craft_information WHERE origin='BOS' or dest='BOS'; 
 
Note that only the columns specified in the CREATE VIEW statement will be 
returned when you query the view. It’s also possible to limit which rows can be 
returned by using a WHERE clause in the view definition. By limiting which 
columns and rows can be returned, views can be used to prevent users from 
accessing sensitive information. So views can be used both for convenience and 
for security. 
 
Create the craft_information view described above. 
Use SHOW TABLES; to get a list of tables in your active database. See 
if craft_information is included, and if it is, does it appear any differently from the 
actual tables in the list? 
Use DESCRIBE craft_information; and then DESCRIBE FORMATTED 
craft_information; Note that there is nothing in the basic DESCRIBE results that 
indicates this is a view rather than a table, then find what there is in DESCRIBE 
FORMATTED that indicates this. 
 
Run a query to return sample craft information for BOS (Logan International 
Airport in Boston), or another U.S. airport that you have flown from. (Not all 
airports will be included in the database, but you can certainly try! If you get 0 
results, try a larger airport.) Note: Most airports are likely to return a large 
number of rows—BOS returns over 2 million rows, for example—so if you are 
using the command line, you should limit the number of rows returned. If you're 
interested, you could also limit the results by picking a particular carrier as well as 
the airport for your WHERE clause, but even then, you might get thousands of 
rows. 
 
If this were a table, there would be a craft_information storage directory in the 
file system (for example, 
in /user/hive/warehouse/ or  /user/hive/warehouse/fly.db, depending on which 
database you had as your active database). Check HDFS for such a directory. 
(There should be none.) The view uses the same data as the source tables, so no 
storage directory is created. 
Do not try dropping the view; you'll use it in the next reading. 
 
 



MODIFYING AND REMOVING VIEWS  

 
As with tables, you can modify and remove views—but there are distinct 
differences in what you can do, and in the results. 
 

MODIFYING VIEWS 

 
You can alter a table in several different ways: rename the table, move it to a 
different database, change column names or types, change column order (Hive 
only), add or remove columns (including replacing all columns at once), or change 
table properties such as whether the table is managed or unmanaged. The ways 
you can modify a view are quite different. In each case you use ALTER VIEW, 
which different additional clauses. Hive and Impala support different clauses, so 
please note which engine supports which modifications. 
Here are two examples: 
 
Associate with a different query (Hive or Impala): Using either Hive or Impala, 
you can keep the view name but change the underlying query. To do this, use this 
syntax: 
    ALTER VIEW viewname AS SELECT …; 
Supply the new query in the SELECT statement after the AS keyword.  
Rename or move to a different database (Impala only): In Impala, you can 
rename the view or move it to a different database using this syntax: 
    ALTER VIEW db.name RENAME TO newdb.newname 
To keep the view in the same database, repeat the same database name, or if the 
active database is the database which has the view, you can omit the database 
name entirely. To keep the same view name when changing the database, repeat 
the same view name. 
Dropping Views 
You can drop a view in Hive or Impala simply by using DROP 
VIEW dbname.viewname; The dbname. is optional if the view is in the active 
database. 
 
Dropping views makes no changes to any data in the file system. Any tables used 
for the underlying query will still have their data. 
Try It! 



Try modifying and then dropping the craft_information view you created in the 
previous reading, “Creating and Querying Views.” If you didn't do the activities 
with that reading, go back and use the instructions to create the view before 
preceding. 
 
First try renaming the view using Impala. Be sure your active database is the one 
with the view, then use ALTER VIEW craft_information RENAME 
TO viewname. You can rename it whatever you like. Run a SHOW 
TABLES; command to see verify that the name has changed. 
 
Change the underlying query, using either Impala or Hive (your choice). Make it 
something simple, such as ALTER VIEW viewname AS SELECT DISTINCT carrier 
FROM flights; Use DESCRIBE viewname; to verify that the underlying query has 
changed. 
 
Finally drop the view. Check that the table you specified in the SELECT statement 
in the view definition in previous step still has its data! 
 

MATERIALIZED AND NON-MATERIALIZED VIEWS 

 
Views in Hive and Impala are typically non-materialized. This means that a view 
does not store or persist any data. It stores only a query. 
 
When you query a view, Hive or Impala generates the result set on the fly by 
running the view’s stored query on the underlying tables, then running your query 
on the result of the stored query.* It does this each time you run the query. For a 
complicated and computationally expensive query, this can take some time—
that’s the major disadvantage of non-materialized views. The major advantage is 
that whenever the data is changed in any of the underlying tables used in the 
stored query, the view will use the new data. 
 
A materialized view, on the other hand, would store the data, so that the SQL 
engine does not need to run a query on the underlying tables every time the view 
is queried. This can save time. However, if the data is changed in any of the 
underlying tables, a materialized view will not use the new data; you would need 
to rebuild the view first. 
 



At this time, Impala does not support materialized views, though this is something 
the developers are considering. (See [IMPALA-3446] for updates on this.) Hive has 
recently added materialized views with Hive 3.0.0. (See [HIVE-10459] and the Hive 
Materialized views page.) However, the VM provided for this course uses an older 
version of Hive, so you cannot create materialized views on the VM. 
* This is essentially what happens, but in practice Hive and Impala might optimize 
this process by combining the operations in your query with the operations in the 
stored query into one single set of operations so that the result can be generated 
as efficiently as possible. 
 
 

THE ORDER BY CLAUSE IN VIEWS 

 
The stored query for a view can be any query—it can use any of the allowed 
clauses of a SELECT statement. However, using the ORDER BY clause in a view’s 
stored query is not recommended. Sorting (arranging) result rows in order is an 
action best performed in the query on the view, not in the view’s stored query. 
To understand why this is, recall that Hive and Impala are designed to distribute 
query processing work across large clusters of computers. Some tasks (like 
filtering rows) can easily be performed in parallel on many rows distributed across 
these many computers. But the task of efficiently sorting many rows typically 
requires consolidating all the rows on just one or a few computers. This makes 
sorting rows a slow and inefficient operation; sorting is typically the bottleneck of 
any query that uses an ORDER BY clause. Furthermore, preserving the sort order 
through later query operations forces those later operations also to be slow and 
inefficient. 
 
So if it is necessary to sort a result set, the sort operation should be 
performed last, after the other operations such as filtering. Because the 
queries on a view will often perform further operations, including filtering, the 
query stored in a view should not perform sorting; doing this would cause major 
inefficiencies. 
 
Impala and newer versions of Hive (version 3.0.0 and higher, which is newer than 
the version on the course VM) prevent these inefficiencies from occurring by 
ignoring the ORDER BY clause when it is used in a view’s stored query. Impala will 
issue a warning to inform you of this when you query a view that uses ORDER 

https://issues.apache.org/jira/browse/IMPALA-3446
https://issues.apache.org/jira/browse/HIVE-10459
https://cwiki.apache.org/confluence/display/Hive/Materialized+views
https://cwiki.apache.org/confluence/display/Hive/Materialized+views


BY in its stored query. However, some applications do not display this warning. 
Impala Shell displays it prominently, but Hue’s Impala query editor does not; you 
need to click Show Logs to see it in Hue. Some other applications do not display 
the warning at all. 
 
Newer versions of Hive will silently ignore the ORDER BY clause in a view’s stored 
query and will not issue any warning. Older versions of Hive (like the one on the 
VM) will respect the ORDER BY clause in a view’s stored query and will incur the 
associated inefficiencies. 
 
The exception to all of this is when the ORDER BY clause is used together with 
the LIMIT clause in a view’s stored query. If a view’s stored query uses ORDER 
BY and LIMIT n, then the sorting operation is much less likely to be a bottleneck, 
because Hive and Impala can efficiently identify the top n or bottom n rows (if n is 
fairly small—and it typically is). 
 
So if a view’s stored query uses ORDER BY together with LIMIT, then Impala and 
newer versions of Hive will not ignore the ORDER BY clause. 
Try It! 
1. Using Hive (either in Hue or using Beeline on the command line), make 
the fly database your active database. 
2. Do a quick SELECT * FROM planes LIMIT 20; to see what the first 20 rows of the 
planes table looks like. 
3. Create a view of the planes table with all the columns, ordering by year in 
descending order but without a LIMIT clause (and omitting any rows 
where year is NULL). You can name it whatever you like. Here's the syntax, just to 
remind you: 
    CREATE VIEW viewname AS 
        SELECT * FROM planes 
            WHERE year IS NOT NULL 
            ORDER BY year DESC; 
4. Query the view just using: 
    SELECT * FROM viewname LIMIT 20; 
    Notice that the result set is indeed sorted by year (all the results should be from 
2018). Also note how long it took to finish (this will matter in the next step). The 
time is reported in the top right of the query window, next to the active database. 
5. Query the view again, but this time sort your query by tailnum: 



    SELECT * FROM viewname ORDER BY tailnum LIMIT 20; 
    Notice that the results are not all from 2018, and the query took probably 
almost twice as long, because it had to sort twice! 
6. Now try it in Impala. First, go to Impala in Hue or using Impala Shell on the 
command line, and make fly the active database. Then execute: 
    INVALIDATE METADATA viewname; 
    so Impala will see the view you created in Hive. 
7. Query the view just using: 
    SELECT * FROM viewname LIMIT 20;  
    a. When you did this in Hive, you got only planes from 2018; what are the 
results this time? 
    b. Can you see the warning message indicating that the ORDER BY clause in the 
view has no effect on the query result? If you are using Hue, click the Show 
Logs button on the upper right; the warning should be visible at the bottom of the 
logs. 
8. You can drop the view if you like. 
 
 

IMPROVING QUERY PERFORMANCE 

When you work with large-scale data, you'll often come across the problem of 
queries that take too long to complete. While they're running, these queries 
might use an enormous amount of the shared compute resources on your cluster. 
Part of the issue is just the sheer size of the data-set, but the specifics of a 
particular query and the different stages that the SQL engine must go through to 
provide the results can have a significant effect on query performance. In this 
lesson, you'll learn a few general strategies for improving query performance, 
darting with choosing which query engine to use. You'll also see how to view the 
execution plan for processing a query to see where the problem areas might be 
and you'll learn a few common ways to address these problems. Then in the next 
two lessons after this one, you'll learn about some more specific strategies for 
improving query performance in two particular types of cases.  
 

WHAT TO DO WHEN QUERIES TAKE TOO LONG 

 
 
 



CHOOSING WHICH QUERY ENGINE TO USE 

 
With different query engines available to you, and with different options available 
in those engines, you'll have to decide which to use for a particular task. Here are 
some guidelines to help you decide. 
 
First, if you're considering whether you should be using a big data system or to a 
relational database system, remember that relational databases are optimized to 
store relatively small amounts of data, to provide immediate query results, and to 
allow for in-place modification of data. Big data engines such as Hive and Impala, 
on the other hand, are better optimized for large amounts of read-only data. They 
provide excellent scalability at low cost. So if you're working with smaller 
amounts of data (no more than a terabyte or two) and you need in-place 
modification of data, you probably don't need or even want to use a big data 
system. 
 
If you do need a big data system, Impala is typically faster than Hive and is good 
for interactive and ad-hoc queries when you're exploring data.  
However, Impala lacks some of the features that Hive provides. For example, a 
very long-running query that experiences failures (due to computers in the cluster 
failing, for example) will fail in Impala, but Hive has fault tolerance and likely will 
still complete the query. This makes Hive a good choice for batch processing and 
ETL jobs using SQL. Hive also offers extensible record formats and file formats; 
Impala is more limited in the accepted file formats. 
 
Hive developers have found ways to improve Hive's query performance in recent 
versions. Hive works by creating jobs that run in a different engine (originally 
MapReduce, which can be rather slow) and the underlying engine can be 
changed. Rather than MapReduce, you may be able to use Apache Spark or 
Apache Tez, both of which are faster than MapReduce. Newer versions of Hive 
also support an architecture called LLAP (Live Long And Process) which caches 
metadata similarly to Impala, reducing query latency. You may want to test some 
typical queries against your own tables to see if one of these works better for you 
than Impala for interactive and ad-hoc queries. 
 
There are a few other considerations when deciding how to complete tasks in big 
data systems. While both Hive and Impala can insert individual records into a 



table, this is not a recommended way to populate a table, because it tends to 
create small files that are inefficient to process. Recent versions of Hive do 
include some limited support for updating and deleting records, but full 
transactions (including COMMIT and ROLLBACK) are not yet implemented. Hive 
and Impala do not support stored procedures, as relational databases do. 
Relational database engines also typically have extensive support for indexing, 
while Hive has only limited support for indexing, and Impala does not support it. 
However, if you need the speed for searching massive datasets that indexing 
provides, other tools such as Cloudera Search, which uses Apache Solr, can be 
used instead. 
 
You might also be curious about Apache Spark, which is another powerful large-
scale data processing engine. It provides APIs for writing custom data processing 
code, but working directly with it requires programming skill. If you don't already 
have skills with Spark, Hive and Impala are typically a better choice for data 
analysis and data processing tasks. 
 

UNDERSTANDING MAP TASKS AND REDUCE TASKS  

 
If you've been using the Hive engine, you may have noticed that some types of 
queries are significantly slower than others. Hive is designed to hide the 
complexity of distributed data processing from the user. To use Hive, you need 
only issue SQL queries. But to understand why some types of queries finish faster 
than others, you need to know what happens when you run a Hive query. 
 

HIVE QUERY PROCESS 

Hive does not have its own data processing engine; instead, it converts a query 
into one or more jobs that run on the cluster using a different engine. Originally, 
MapReduce was the exclusive data processing engine for Hive. Newer versions of 
Hive include support for Apache Spark or Apache Tez as an alternative engine. 
When you use MapReduce as Hive’s execution engine, this is called Hive on 
MapReduce. There are similar terms for Spark and Tez. In this reading, and as the 
default execution engine in the course VM, we're using Hive on MapReduce. 
A Hive client application, such as Beeline or Hue, connects to a Hive server. When 
you run a query from one of these clients, the Hive server performs several 
operations. It parses the SQL, retrieves metadata from the metastore, and plans 



the execution of the query. These steps are relatively fast; they might take only a 
small fraction of a second for a simple query. See the first column, “Steps Run by 
Hive Server,” of Figure 1. 

 
Figure 1: Hive process overview 
 
Then the Hive server submits one or more jobs to the cluster. On the cluster, the 
jobs are divided into tasks, the tasks are distributed across nodes, and processes 
are started to execute the tasks (“Steps Run on Hadoop Cluster” in Figure 1). 
Tasks are executed in a specific sequence. First the input data is read, then the 
data is processed through one or more map and reduce phases, and finally the 
result is generated. The steps that run on the cluster account for a large majority 
of a query’s total running time. 
 
Map and Reduce Tasks 
To understand how a job on the cluster is divided up into tasks, you need to 
understand how the map-reduce data processing model works. The MapReduce 
engine used by Hive is an implementation of the map-reduce data processing 
model. 
 



This model provides a way to divide a large data processing job into a sequence of 
smaller tasks that can run in parallel across a large number of computers. A 
MapReduce job is divided into two types of tasks: map tasks and reduce tasks. 
These tasks are sequenced in phases. 

 
 
Figure 2: Map-reduce job within the Hive process 
A map phase runs first. It is used to filter, transform, or parse data. In a map 
phase, each record of data is processed independently. The output from a map 
phase becomes the input to a reduce phase. A reduce phase is used to summarize 
or aggregate data, combining multiple records together. Some types of jobs don’t 
perform any aggregation so they don’t require a reduce phase; these are called 
map-only jobs. 
 
Example MapReduce Job 
This example illustrates how a Hive query executes as a MapReduce job. The 
query in this example selects data from a table named order_info. This table has 
three columns representing the order ID, the name of the salesperson, and the 
order amount.  
SELECT upper(sales_rep), SUM(amount) AS high_sales 
    FROM order_info 
    WHERE amount > 1000 
    GROUP BY upper(sales_rep); 
 



 
Figure 3: Example input data 
 
Notice that salespeople can have multiple orders. The query groups by 
the sales_rep column, adjusted for case sensitivity, and calculates the sum of the 
order amounts for each salesperson. Executing this query requires both a map 
phase and a reduce phase. 
 
In the map phase of the MapReduce job, the individual map tasks each receive a 
portion of the input data. The number of map tasks is determined primarily by the 
total size of the input data. The example in Figure 4 shows five parallel map tasks, 
but with a very large input dataset, there could be hundreds or thousands.  



 
Figure 4: Map output 
The map tasks process the input records. They may filter, transform, or parse the 
input data. The map tasks can also project the input data, which means returning 
only a subset of the columns. That’s what the map tasks do in this example; each 
map task simply reads a portion of the input data and outputs the 
sales_rep and amount fields, discarding the order ID field because it’s not 
needed. 
 
The output from the map tasks goes through an intermediate process 
called shuffle and sort. This process merges together the output from all the 
map tasks to create the input to the reduce phase, one input dataset for each 
reduce task. (See Figure 5.) The process also sorts the data by the column or 
columns that the data is grouped by, which in this example is 
the sales_rep column. Notice here that the records for Alice are grouped 
together, the records for Carlos are grouped together, and so on. But the result is 
not globally ordered—notice here that Carlos comes before Bob.  



 
Figure 5: Shuffle and sort 
The reduce tasks are where aggregation is performed; in this example, they 
compute the sum of the order amounts for each salesperson. The number of 
reduce tasks is determined by the configuration of Hive or MapReduce, and it’s 
almost always much smaller than the number of map tasks. This example (Figure 
6) shows two reduce tasks. The outputs from the reduce tasks are appended 
together to produce the query result.  
 

 
Figure 6: Reduce output 
 
  



Hive Query Performance Patterns 
 
The speed with which a query completes depends upon what operations Hive 
must perform to execute the query. The sections below present query patterns in 
order from the fastest to the slowest.  
Understanding these patterns requires an understanding of map and reduce 
phases, so if you have not yet read “Understanding Map Tasks and Reduce Tasks,” 
you should do so before continuing. How to know what phases a particular query 
requires may seem mysterious at this time. With practice, you'll get better at 
distinguishing map tasks from reduce tasks. The next reading, “Understanding 
Execution Plans,” will give you some tools to help you figure this out, too. 
1. Only Metadata 

 
 
The fastest type of query requires Hive to retrieve only metadata from the 
metastore, not data from the file system. An example of this is 
a DESCRIBE command.  
DESCRIBE customers; 
2. Fetch Tasks 

 
 
The next fastest type is a query that executes as a fetch task. These 
are SELECTqueries that do not require the underlying data processing engine. The 
Hive server executes these queries by fetching data directly from the file system 
and processing it internally. This eliminates the overhead of starting separate 
processes to execute the job, which reduces query latency.  
SELECT * FROM customers LIMIT 10; 
A fetch task can do more than simply fetching the data and returning it, but there 
are limitations. To execute as a fetch task, a SELECT statement must not include 
the DISTINCT keyword and must not use aggregation, windowing, or joins. Also, 
the input data must be smaller than one gigabyte. Some of these requirements 
can be changed using Hive configuration properties. 
3. Only Map Phase 



 
Next fastest is the type of query that requires only a map phase and no reduce 
phase. For example, when a query inserts data into another table, Hive executes 
the query as a map-only job. 
INSERT INTO TABLE ny_customers 
    SELECT * FROM customers 
        WHERE state = 'NY'; 
 
4. Map and Reduce Phases 

 
Slower yet is the type of query that requires both map and reduce phases, such as 
a query that performs aggregation. To execute this example, Hive projects and 
filters the data in the map phase, then aggregates it using the COUNT function in 
the reduce phase.  
SELECT COUNT(cust_id) 
    FROM customers 
    WHERE zipcode=94305; 
 
 
5. Multiple Map and Reduce Phases 

 

The slowest type of query is one that requires multiple map and reduce phases. This example is 

similar to the previous one, but it also sorts the results and returns only the first 10 rows. 

Executing this query requires a sequence of multiple map and reduce phases. 

SELECT zipcode, COUNT(cust_id) AS num 

    FROM customers 

    GROUP BY zipcode 



    ORDER BY num DESC 

    LIMIT 10; 

 

UNDERSTANDING EXECUTION PLANS 

 
To get a true grasp on what causes a query to take a long time, you need to 
understand what operations Hive or Impala will perform when it executes a 
query. To find this out, you can view the execution plan for a query. The 
execution plan is a description of the tasks required for a query, the order in 
which they'll be executed, and some details about each task. 
To see an execution plan for a query, you can do either of these: 
Prefix the query with the keyword EXPLAIN, then run it. 
In Hue, simply click the Explain button, which has an icon of a folding map: 

 
Execution plans can be long and complex. Fully understanding them requires a 
deep knowledge of MapReduce, which is beyond the scope of this course. 
However, the basics covered here provide a useful introduction that can help you 
identify trouble areas in your queries' execution plans. 
The execution plans provided by Hive and by Impala look slightly different, but at 
a basic level, they provide more or less the same information. (Hive's execution 
plans provide much more detail, and understanding it all is beyond the scope of 
this course.) 
The next several sections show these parts of the query plan for this example 
query: 
    CREATE TABLE flights_by_carrier AS  
        SELECT carrier, COUNT(flight) AS num  
            FROM flights GROUP BY carrier; 
This query is a CTAS statement that creates a new table 
named flights_by_carrier and populates it with the result of a SELECT query. 
The SELECT query groups the rows of the flights table by carrier and returns each 
carrier and the number of flights for that carrier. 



 

HIVE EXECUTION 

Hive's output of the EXPLAIN statement for the example is shown here, with some details 

removed: 

 
 
 



STAGE DEPENDENCIES 
 
The example query will execute in four stages, Stage-0 to Stage-3. Each stage 
could be a MapReduce job, an HDFS action, a metastore action, or some other 
action performed by the Hive server.  
 
The numbering does not imply an order of execution or dependency. The 
dependencies between stages determine the order in which they must execute, 
and Hive specifies these dependencies explicitly at the start of 
the EXPLAIN results. 
 
A root stage, like Stage-1 in this example, has no dependencies and is free to run 
first. Non-root stages cannot run until the stages upon which they depend have 
completed. 
 

STAGE PLANS 
 
The stage plans part of the output shows descriptions of the stages. For Hive, read 
them by starting at the top and then going down.  
 
Stage-1 is identified as a MapReduce job. The query plan shows that this job 
includes both a map phase (described by the Map Operator Tree) and a reduce 
phase (described by the Reduce Operator Tree). In the map phase, the map tasks 
read the flights table and select the carrier and flights columns. This data is 
passed to the reduce phase, in which the reduce tasks group the data by carrier 
and aggregate it by counting flights. 
 
Following Stage-1 is Stage-0, which is an HDFS action (Move). In this stage, Hive 
moves the output of the previous stage to a new subdirectory in the warehouse 
directory in HDFS. This is the storage directory for the new table that will be 
named flights_by_carrier. (The actual HDFS path is too long to show here.) 
Following Stage-0 is Stage-3, which is a metastore action: Create Table. In this 
stage, Hive creates a new table named flights_by_carrier in the fly database. The 
table has two columns: a STRING column named carrier and a BIGINT column 
named num. 
 



The final stage, Stage-2, collects statistics. The details of this final stage are not 
important, but it gathers information such as the number of rows in the table, the 
number of files that store the table data in HDFS, and the number of unique 
values in each column in the table. These statistics can be used to optimize Hive 
queries, but further discussion of that is beyond the scope of this course. 
 
 

IMPALA EXECUTION 

Impala's output of the EXPLAIN statement for the example is shown here: 

 
 
For Impala's results, the stages are executed from the bottom up (so the first 
stage is 00 and the final stage is WRITE TO HDFS. There are four stages 
labeled 00 to 03, and a final unnumbered stage. The numbering normally does 
not imply execution order, although in this case, the stages will execute in order 
from 00 to 03. (Although this example does not show it, additional root stages can 
be shown within one of the other stages that depends on it, by indenting the line 
for the root stage.) 
 
The stages are a bit different for Impala; it does not use the map-reduce phases 
that Hive does with the MapReduce engine. Impala's output is also a bit easier to 
read. 



In Stage 00, Impala reads in the data for the flights table in the fly database. 
In Stage 01, each daemon working on this task groups its data by carrier and 
counts the flight column. At this stage, it's probable that a particular carrier's data 
will be distributed across daemons. 
 
Stage 02 is similar to the shuffle and sort in a MapReduce job. Data is exchanged, 
using carrier to determine which data goes to which daemon. 
In Stage 03, the daemons again group the data by carrier and merge the individual 
counts for each carrier. 
 
The final stage writes the results to the new table, flights_by_carrier in the fly 
database. 
Try It! 
Try running these EXPLAIN statements on the example query, in both Hive and 
Impala. (You do not need to run the query itself.)  
See what you can understand from a few other examples. You can try different 
examples, from something simple (like SELECT * FROM fun.games;) to something 
a bit more complicated, like  
            SELECT COUNT(f.flight) FROM flights f 
                JOIN planes p ON (f.tailnum = p.tailnum) 
                WHERE p.year < 1968 
 
 

TABLE AND COLUMN STATISTICS 

 
The SQL engines you use do a certain amount of optimizing of the queries on their 
own—they look for the best way to proceed with your query, when possible. 
When the query uses joins, the optimizers can do a better job when they 
have table statistics and column statistics. For the table as a whole, these 
statistics include the number of rows, the number of files used to store the data, 
and the total size of the data. The column statistics includes the approximate 
number of distinct values and the maximum and average sizes of the values 
(not the maximum or average value, but rather the size used in storage). The 
optimizers use this information when deciding how to perform the join tasks. 
Statistics also help your system prevent issues due to memory usage and resource 
limitations. 



These statistics are not automatically calculated—you have to manually trigger it 
using a SQL command (see below). Once statistics are computed, both Hive and 
Impala can use them, though if you compute them in Hive, you need to refresh 
Impala's metadata cache. If you make any changes to the table, such as adding or 
deleting data, you'll need to recompute the statistics. 
 
Both Hive and Impala can use the statistics, even when calculated by the other 
machine. However, when you have both Impala and Hive available, Cloudera 
recommends using Impala's COMPUTE STATS command to calculate and view the 
statistics. The method for Hive (see below) is a bit more difficult to use. If you do 
use Hive, you must refresh Impala's metadata cache for the table if you want 
Impala to use the statistics. 
 

STATISTICS IN IMPALA 

Impala's syntax for calculating statistics for a table (including statistics for all 
columns) is COMPUTE STATS dbname.tablename; If the table is in the active 
database, you can omit dbname. from the command. 
 
To see the statistics in Impala, run SHOW TABLE 
STATS dbname.tablename; or SHOW COLUMN STATS dbname.tablename; 
 
Note: If the statistics have not yet been computed, #Rows for the table shows -1. 
The #Nulls statistics for each column will always be -1; old versions of Impala 
would calculate this statistic, but it is not used for optimization, so newer versions 
skip it. 
 
 

STATISTICS IN HIVE 

Hive's syntax for calculating statistics for a table is ANALYZE 
TABLE dbname.tablename COMPUTE STATISTICS; If the table is in the active 
database, you can omit dbname. from the command. To calculate column 
statistics, add FOR COLUMNS at the end of the command. 
 
To see the table statistics in Hive, run DESCRIBE 
FORMATTED dbname.tablename; The Table Parameters section will 
include numFIles, numRows, rawDataSize, and totalSize. To see the statistics for 



a column, include the column name at the end: DESCRIBE 
FORMATTED dbname.tablename columnname; You can only display column 
statistics one column at a time. 
Try It! 

1. The planes table in the fly database has not had any statistics computed for 
it. In Impala, run SHOW TABLE STATS fly.planes; Notice that #Rows says -1. 
Then run SHOW COLUMN STATS for the same table. Most of the statistics 
there are also -1. (The INT types have max and average size of 4, because all 
integer types have a fixed size.) 

2. Use COMPUTE STATS fly.planes; to compute the table and column 
statistics. Check the table and column statistics for these, and note that 
there is information where there wasn't before. (The #Null column will still 
be all -1 though, as noted above.) 

3. Compare the number of rows from the table statistics to the #Distinct 
Values statistics for the tailnum column. Most likely it appears that there 
are more distinct values in that column than there are rows in the table! 
This isn't unusual—remember, #Distinct Values is an approximation of 
the number of distinct values in the column, not an actual count. 

 

OTHER STRATEGIES FOR QUERY OPTIMIZATION 

There are some other techniques for improving Hive and Impala query 
performance that are not described in this course. Two of these techniques are 
briefly described below. Further details of these methods are beyond the scope of 
this course, but you can follow the links below to learn more. 
 
 

BUCKETING (HIVE ONLY) 

Bucketing is a Hive-only technique that is similar to partitioning. Recall that 
partitioning is an approach for improving Hive query performance. Partitioning 
divides a table’s data into separate subdirectories based on the values from one 
or more partition columns, which have a limited number of discrete values. Hive 
also offers another way of subdividing data, called bucketing. 
 
Bucketing stores data in separate files, not separate subdirectories like 
partitioning. It divides the data in an effectively random way, not in a predictable 



way like partitioning. When records are inserted into a bucketed table, Hive 
computes hash codes of the values in the specified bucketing column and uses 
these hash codes to divide the records into buckets. For this reason, bucketing is 
sometimes called hash partitioning. The goal of bucketing is to distribute 
records evenly across a predefined number of buckets. Bucketing can improve the 
performance of joins if all the joined tables are bucketed on the join key column. 
For more on bucketing, see the page of the Hive Language Manual describing 
bucketed tables, at 
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL+Bucket
edTables. 
 
 

INDEXING (HIVE ONLY) 

If you have worked with relational databases, you may be familiar with indexes. 
Indexes can greatly improve the speed of queries that search for specific values in 
certain columns. By indexing the columns you’re filtering by, you can avoid the 
need to do a full table scan at query time. However, relational database 
implementations of indexing typically depend on the database system controlling 
all data that is added to tables. Since Hive and Impala do not work this way, the 
use of indexing would not confer the same benefits with Hive and Impala. 
Early versions of Hive (but not Impala) include a limited implementation of 
indexing. As in relational databases, indexes in Hive can improve the speed of 
some queries. However, the speedup from indexing is typically not as dramatic, 
and building and maintaining indexes with Hive has high costs in terms of disk 
space and CPU utilization. In fact, indexing is no longer supported in Hive as of 
version 3.0.0. Cloudera recommends using Cloudera Search (an implementation 
of Apache Solr) if you need extensive indexing. 
 
For more on indexing, see the page of the Hive Language Manual describing 
indexing, 
at  https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Indexing.  
 
 

TABLE PARTITIONING 

Table partitioning, is one approach for improving Hive and Impala query 
performance. Recall that the data for Hive and Impala tables typically is stored in 

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL+BucketedTables
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL+BucketedTables
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Indexing


a file system like HDFS or S3. Breach table, there is a single directory in the file 
system containing the files that store that tables data. Typically, there are no sub-
directories within a table storage directory and all the data files are stored directly 
in the storage directory. But this poses a problem. If the table contains a huge 
amount of data, stored across many files, then it can take the query engine an 
awfully long time to scan through all those files. Hive and Impala are pretty good 
at scanning files quickly, especially if they're in an optimized file format like 
Parquet. But still, when the data gets very large, queries can become slow and 
inefficient. Table partitioning offers help with this problem. It divides a table's 
data into multiple subdirectories within the tables directory.  
 
The data is divided into these subdirectories when it is loaded. Each record is 
stored in a partition subdirectory, based on the values of one or more columns 
called partition columns. Then when you run a query that filters on a partition 
column, the query does not need to scan all the tables data, it only needs to scan 
the relevant partition subdirectories. This allows the query to run faster. A query 
that does not filter on a partition column, will still need to scan all the data, so it 
will not be any faster. But to be clear, partitioning does not prevent you from 
running any query that you could run on a non-partitioned table. When used 
appropriately, table partitioning can greatly improve the performance of 
commonly used queries. But in some cases, partitioning may not be worthwhile. 
In other cases, it may actually worsen query performance.  
 
So it's important to understand when table partitioning is appropriate. Typically, 
partitioning is a good idea under the following criteria.  
 
If the table is very large, an Hive and Impala will necessarily take a long time to 
scan all the data in the tables directory for all your queries. Table partitioning can 
allow Hive and Impala to scan only parts of the data, resulting in improved 
performance. Your table partitioning will favor certain queries. You want to know 
that these are queries that you will tend to run frequently. The queries that will 
be helped by table partitioning, are those in which you filter two specific values 
on a certain column or columns. This is how you'll choose to organize your table 
into partitions by that column or columns.  
 
Don't worry if this is not perfectly clear right now. You will see working examples 
in the lesson. Third, the partition column should have a reasonable number of 



different values, and not to make partitioning worthwhile, but not so many that 
queries become inefficient. For example, you would not want a customer table to 
be partitioned on different values of say customer ID, because then you would 
have many partitions each with very little data. This huge number of partition 
directories would greatly penalize the performance of all your queries.  
 
Under these criteria, partitioning can be appropriate. If the criteria I've given here 
do not apply, you should think twice about whether to use partitioning. In a 
partition table, files are stored in different directories based on different values of 
some categorical variable like transaction date, or customer region. Since a 
partition table will organize data this way, it can be especially sensible to use 
table partitioning if your data processes already generate files that are divided by 
category. For example, maybe you receive log records from a log web server, with 
a different set of files for each new date.  
 
It's easy to place these files into a table partitioned by date. Having this kind of 
organization, can help provide great performance benefits for many of your 
analytic queries. Another aspect of the organization of partition tables is that one, 
or perhaps more than one column in your table, will not be stored in the data files 
at all. But instead will be the tag for different subdirectories where your files are 
stored.  
 
For example, if you receive a set of files for sales transactions in your northeast 
region, and a second set of files for your northwest region, you can easily place 
these files into partitions, where one subdirectory has data for your table column 
region equal to northeast. There was a different subdirectory for the column 
region, equal to northwest. You can set up these directories, and then easily run 
queries for distinct regions and their partition table will help with your query 
performance.  
 
If you choose partition tables, you will transform your data so that it will be 
organized to meet these two criteria I've just given, whether or not the data 
comes to you organized that way originally, though it can make your table setup 
simpler if these criteria are met, but it is not critical that these criteria are met by 
your data to begin with. It's important to avoid partitioning data into numerous 
small files because this will worsen query performance instead of improving it.  
 



This small files problem occurs when their partition columns contain too many 
unique values. An example of a poor choice for partition column is, first name. 
There could be thousands of different first names in a table of customers. In the 
remainder of this lesson, you will learn how to create and load data into partition 
tables. You'll learn more about the risk of using partitioning. A final note to 
anyone who's familiar with partitioning from the world of relational database 
systems.  
 
Many relational databases do support other types of table partitioning. Such as 
range, hash, and list partitioning. In general, Hive and Impala do not support 
these. There are some ways to achieve these more specialized types of 
partitioning with Hive and Impala, but that topic is outside the scope of this 
course.  
 

WHEN TO USE TABLE PARTITIONING 

 
To create a partitioned table, use the PARTITIONED BY clause in the CREATE 
TABLE statement. The names and types of the partition columns must be 
specified in the PARTITIONED BY clause, and only in the PARTITIONED BY clause. 
They must not also appear in the list of all the other columns. 
    CREATE TABLE customers_by_country  
            (cust_id STRING, name STRING)  
        PARTITIONED BY (country STRING) 
        ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'; 
The example CREATE TABLE statement shown above creates the 
table customers_by_country, which is partitioned by the STRING column 
named country. Notice that the country column appears only in 
the PARTITIONED BY clause, and not in the column list above it. This example 
specifies only one partition column, but you can specify more than one by using a 
comma-separated column list in the PARTITIONED BY clause. Aside from these 
specific differences, this CREATE TABLE statement is the same as the statement 
used to create an equivalent non-partitioned table. 
Table partitioning is implemented in a way that is mostly transparent to a user 
issuing queries with Hive and Impala. A partition column is what’s known as 
a virtual column, because its values are not stored within the data files. 
Following is the result of the DESCRIBE command on customers_by_country; it 
displays the partition column country just as if it were a normal column within the 



table. You can refer to partition columns in any of the usual clauses of 
a SELECT statement. 

name type comment 

cust_id string   

name string   

country string   

Note: In the previous lesson, you learned about using COMPUTE STATS in Impala 
and ANALYZE TABLE … COMPUTE STATISTICS in Hive. If the table is partitioned, 
Impala cannot use Hive-generated column statistics, so for partitioned tables, it's 
best to compute the statistics with the engine you'll be using to query the table. 
Try It! 
Use the CREATE TABLE command above to create a customers_by_country table 
on your VM, then use DESCRIBE to show the columns. Notice that it's just as 
described above: there is no apparent difference between the partition column 
and the other columns. 
You'll use this table in the next readings too, so don't drop it yet. 
 
 
 
 

CREATING PARTITIONED TABLES 

 
Loading Data with Dynamic Partition 
One way to load data into a partitioned table is to use dynamic 
partitioning, which automatically defines partitions when you load the data, 
using the values in the partition column.(The other way is to manually define the 
partitions. See “Loading Data with Static Partitioning” for this method.)  
To use dynamic partitioning, you must load data using an INSERT statement. In 
the INSERT statement, you must use the PARTITION clause to list the partition 
columns. The data you are inserting must include values for the partition columns. 
The partition columns must be the rightmost columns in the data you are 
inserting, and they must be in the same order as they appear in 
the PARTITION clause. 
 
    INSERT OVERWRITE TABLE customers_by_country  
        PARTITION(country) 



        SELECT cust_id, name, country FROM customers; 
 
The example shown above uses an INSERT … SELECT statement to load data into 
the customers_by_country table with dynamic partitioning. Notice that the 
partition column, country, is included in the PARTITION clause and is specified 
last in the SELECT list.  
When Hive or Impala executes this statement, it automatically creates partitions 
for the country column and loads the data into these partitions based on the 
values in the country column. The resulting data files in the partition 
subdirectories do not include values for the country column. Since the country is 
known based on which subdirectory a data file is in, it would be redundant to 
include country values in the data files as well. 
 
Note: Hive includes a safety feature that prevents users from accidentally creating 
or overwriting a large number of partitions. (See “Risks of Using Partitioning” for 
more about this.) By default, Hive sets the 
property hive.exec.dynamic.partition.mode to strict. This prevents you from 
using dynamic partitioning, though you can still use static partitions. 
You can disable this safety feature in Hive by setting the 
property hive.exec.dynamic.partition.mode to nonstrict: 
    SET hive.exec.dynamic.partition.mode=nonstrict; 
Then you can use the INSERT statement to load the data dynamically.  
Hive properties set in Beeline are for the current session only, so the next time 
you start a Hive session this property will be set back to strict. Your system 
administrator can configure properties permanently, if necessary. 
 
Try It! 
If you did not create the customers_by_country table in the “Creating Partitioned 
Tables” reading, do so before continuing. If you did the exercises in the “Loading 
Data with Static Partitioning” reading before doing this one, drop the table and 
recreate it (without loading the data). 
1. First, look at the contents of the customers_by_country table directory in 
HDFS. (Where this directory exists depends on which database holds the table.) 
You can use Hue or an hdfs dfs -ls command to list the contents of the directory. 
Since you haven't loaded any data, it should be empty. 
2. If you want to use Hive, disable the partition safety feature by running  
    SET hive.exec.dynamic.partition.mode=nonstrict; 



    If you want to use Impala for the rest of these exercises, you don't need to run 
that command. 
3. The customers table has only four rows, and each has a different code in 
the country column. Use the following command to insert the data into the 
partitioned customers_by_country table: 
    INSERT OVERWRITE TABLE customers_by_country  
        PARTITION(country) 
        SELECT cust_id, name, country FROM default.customers; 
4. Look at the contents of the customers_by_country directory. It should now 
have one subdirectory for each value in the country column. 
5. Look at the file in one (or more, if you like) of those directories, using Hue or 
an hdfs dfs -cat command. Notice that the file contains the row for the customer 
from that country, and no others; notice also that the country value is not 
included. 
6. Run some SELECT queries on the partitioned table. Try one that does no 
filtering (like SELECT * FROM customers_by_country;) and one that filters 
on country. It's a small table so there won't be a significant difference in the time 
it takes to run; the point is to notice that you will not query the table any 
differently than you would query the customers table. 
 
 

LOADING DATA WITH STATIC PARTITIONING 

 
One way to load data into a partitioned table is to use static partitioning, in 
which you manually define the different partitions.(The other way is to have the 
partitions automatically defined when you load the data. See “Loading Data with 
Dynamic Partitioning” for this method.)  
 
With static partitioning, you create a partition manually, using an ALTER TABLE … 
ADD PARTITION statement, and then load the data into the partition.  
For example, this ALTER TABLE statement creates the partition for Pakistan (pk): 
    ALTER TABLE customers_by_country 
        ADD PARTITION (country='pk'); 
Notice how the partition column name, which is country, and the specific value 
that defines this partition, which is pk, are both specified in the ADD 
PARTITION clause. This creates a partition directory named country=pk inside 
the customers_by_country table directory. 



After the partition for Pakistan is created, you can add data into the partition 
using an INSERT … SELECT statement:  
  
   INSERT OVERWRITE TABLE customers_by_country  
        PARTITION(country='pk') 
        SELECT cust_id, name FROM customers WHERE country='pk' 
 
Notice how in the PARTITION clause, the partition column name, which 
is country, and the specific value, which is pk, are both specified, just like in 
the ADD PARTITION command used to create the partition. Also notice that in 
the SELECT statement, the partition column is not included in the SELECT list. 
Finally, notice that the WHERE clause in the SELECT statement selects only 
customers from Pakistan. 
 
With static partitioning, you need to repeat these two steps for each partition: 
first create the partition, then add data. You can actually use any method to load 
the data; you need not use an INSERT statement. You could instead use hdfs 
dfs commands or a LOAD DATA INPATH command. But however you load the 
data, it’s your responsibility to ensure that data is stored in the correct partition 
subdirectories. For example, data for customers in Pakistan must be stored in the 
Pakistan partition subdirectory, and data for customers in other countries must 
be stored in those countries’ partition subdirectories. 
 
Static partitioning is most useful when the data being loaded into the table is 
already divided into files based on the partition column, or when the data grows 
in a manner that coincides with the partition column: For example, suppose your 
company opens a new store in a different country, like New Zealand ('nz'), and 
you're given a file of data for new customers, all from that country. You could 
easily add a new partition and load that file into it. 
 
Try It! 
If you did not create the customers_by_country table in the “Creating Partitioned 
Tables” reading, do so before continuing. If you did the exercises in the “Loading 
Data with Dynamic Partitioning” reading before doing this one, drop the table and 
recreate it (without loading the data). (Hint: In Hue, you probably don't have to 
retype the command, it should be in your Query History. Find it and click on it.) 



1. First, look at the contents of the customers_by_country table directory in 
HDFS. (Where this directory exists depends on which database holds the table.) 
You can use Hue or an hdfs dfs -ls command to list the contents of the directory. 
Since you haven't loaded any data, it should be empty. 
2. Add the partition for Pakistan (pk) using the ALTER TABLE command: 
     
ALTER TABLE customers_by_country 
        ADD PARTITION (country='pk'); 
 
3. Check the contents of the customers_by_countrytable directory in HDFS and 
see that it now has a subdirectory for the partition you just created. 
4. Now load only the customers from Pakistan into that partition: 
 
    INSERT OVERWRITE TABLE customers_by_country  
        PARTITION(country='pk') 
        SELECT cust_id, name FROM default.customers WHERE country='pk'; 
 
5. Optional: Modify and run both commands to create a partition for one of the 
other countries (us, ja, or ug) and load the data from the customers table into 
that partition. You can do it for all three if you like. Check that 
the customers_by_country directory has one subdirectory for each partition you 
added. 
6. Look at the file in one (or more, if you like) of those directories, using Hue or 
an hdfs dfs -cat command. Notice that the file contains the row for the customer 
from that country, and no others; notice also that the country value is not 
included (because you didn't include it in the SELECT list). 
7. Run some SELECT queries on the partitioned table. Try one that does no 
filtering (like SELECT * FROM customers_by_country;) and one that filters 
on country. It's a small table so there won't be a significant difference in the time 
it takes to run; the point is just to notice that you will not query the table any 
differently than you would query the customers table. 

  

 

 



RISKS OF USING PARTITIONING 

A major risk when using partitioning is creating partitions that lead you into the 
small files problem. When this happens, partitioning a table will actually worsen 
query performance (the opposite of the goal when using partitioning) because it 
causes too many small files to be created. This is more likely when using dynamic 
partitioning, but it could still happen with static partitioning—for example if you 
added a new partition to a sales table on a daily basis containing the sales from 
the previous day, and each day’s data is not particularly big.  
 
When choosing your partitions, you want to strike a happy balance between too 
many partitions (causing the small files problem) and too few partitions (providing 
performance little benefit). The partition column or columns should have a 
reasonable number of values for the partitions—but what you should 
consider reasonable is difficult to quantify.  
 
Using dynamic partitioning is particularly dangerous because if you're not careful, 
it's easy to partition on a column with too many distinct values. Imagine a use 
case where you are often looking for data that falls within a time frame that you 
would specify in your query. You might think that it's a good idea to partition on a 
column that pertains to time. But a TIMESTAMP column could have the time to 
the nanosecond, so every row could have a unique value; that would be a terrible 
choice for a partition column! Even to the minute or hour could create far too 
many partitions, depending on the nature of your data; partitioning by larger time 
units like day, month, or even year might be a better choice. 
 
As another example, consider the default.employees table on the VM. This has 
five columns: empl_id, first_name, last_name, salary, and office_id. Before 
reading on, think for a moment, which of these might be reasonable for 
partitioning (assuming the table will eventually be much larger than the five rows 
in our sample table)?  
 
The column empl_id is a unique identifier. If that were your partition column, you 
would have a separate partition for each employee, and each would have exactly 
one row. In addition, it's not likely you'll be doing a lot of queries looking for a 
particular value, or even a particular range of values. This is a poor choice. 
The column first_name will not have one per employee, but there will likely be 
many columns that have only one row. This is also true for last_name. Also, 



like empl_id, it's not likely you'll need filter queries based on these columns. 
These are also poor choices. 
 
The column salary also will have many divisions (and even more so if your salaries 
go to the cent rather than to the dollar as our sample table does). While it may be 
that you'll sometimes want to query on salary ranges, it's not likely you'll want to 
use individual salaries. So salary is a poor choice. A more 
limited salary_grades specification, like the ones in the salary_grades table, might 
be reasonable if your use case involves looking at the data by salary grade 
frequently. 
 
The office_id column identifies the office where an employee works. This will 
have a much smaller number of unique values, even if you have a large company 
with offices in many cities. It's imaginable that your use case might be to 
frequently filter your employee data based on office location, too. So this would 
be a good choice. 
 
You also can use multiple columns and create nested partitions. For example, a 
dataset of customers might include country and state_or_province columns. You 
can partition by country and then partition those further by state_or_province, 
so customers from Ontario, Canada would be in 
the country=ca/state_or_province=on/ partition directory. This can be extremely 
helpful for large amounts of data that you want to access either by country or by 
state or province. However, using multiple columns increases the danger of 
creating too many partitions, so you must take extra care when doing so. 
The risk of creating too many partitions is why Hive includes the 
property hive.exec.dynamic.partition.mode, set to strict by default, which must 
be reset to nonstrict before you can create a partition. (See the note about this, 
near the end of the “Loading Data Using Dynamic Partitioning” reading.) Rather 
than automatically and mechanically resetting that property when you're about to 
load data dynamically, take it as an opportunity to think about the partitioning 
columns and maybe check the number of unique values you would get when you 
load the data. 
 
 

COMPLEX DATA AND DENORMALIZATION 

 



When to Use Complex Columns 
 
A particularly computationally expensive class of queries for Hive and Impala is 
joins. Queries with joins can take a long time. The main strategy for making these 
queries faster is to actually eliminate the need to join multiple tables together by 
denormalizing tables and storing data in complex columns where suitable. Hive 
and Impala support the use of three complex column types, array, map, and 
struct. These column types combine multiple values into a single column. While 
avoiding joins and improving performance is our main motivation to look at 
complex column types now, there are other reasons why you might want to use 
complex types. For example, complex types help organize related data. You can 
store related fields in a single column rather than multiple columns with similar 
column names. Complex types afford flexibility. They allow you to store an 
arbitrary amount of data in a single row. Sometimes the data files you want to 
query already contain complex or nested structures. This is common for data 
produced by tools like Apache Pig and Spark, and languages like Java and Python. 
By using Hive and Impala's complex types, you can avoid the need to flatten these 
nested structures. Although these three column types are the same in Hive and 
Impala, these two engines use different syntax to access them. The readings in 
this lesson we'll explain the types and then provide guidance in using them in 
both engines.  
 

COMPLEX DATA TYPES 

Recall that Hive and Impala support a number of simple data types, similar to the 
types found in relational databases. These simple data types represent a single 
value within a single row-column position.  
 
In addition, Hive and Impala also support several complex data types, which 
represent multiple values within a single row-column position. Complex types are 
also referred to by several other names, including nested types and collection 
types. 
 
Hive and Impala both support three different complex data types: ARRAY, MAP, 
and STRUCT.  

 



ARRAY 

An ARRAY represents an ordered list of values, all having the same data type. For 
example, people often have multiple phone numbers, such as home (landline), 
work, and mobile. An array could hold several phone numbers. In the table below, 
the column phones is an ARRAY in which each element is a STRING: 
 

name phones 

Alice [555-1111, 555-2222, 555-3333] 

Bob [555-4444] 

Carlos [555-5555, 555-6666] 

The elements of an ARRAY can be other simple data types, but all elements of 
an ARRAY must be of the same type. 
 
 
 
 

MAP 

A MAP represents key-value pairs, with all keys having the same data type, and all 
values having the same type. With the phones example, this allows you to specify 
which phone number is for what purpose (such as home, work, or mobile): 
 

name phones 

Alice {home:555-1111, work:555-2222, mobile:555-3333} 

Bob {mobile:555-4444} 

Carlos 
{work:555-5555, home:555-6666} 
 

Here the key is a STRING and the value is also a STRING. Each could be other 
simple data types; for example, if you don't use the dash in the phone numbers, 
you could make the key STRING and the value INT. 
 
 
 
 
 



STRUCT 

A STRUCT represents named fields, which can have different data types. For 
example, you could use a STRUCT to store addresses, with each part of the 
address a different field: 

name address 

Alice {street:742 Evergreen Terrace, city:Springfield, state:OR, zipcode:97477} 

Bob 
{street:1600 Pennsylvania Ave NW,  city:Washington, state:DC, 
zipcode:20500} 

Carlos {street:342 Gravelpit Terrace, city:Bedrock} 

Here, the STRUCT is defined to have four fields: street, city, 
and state are STRING types; zipcode is an INT type (though it could also 
be STRING). Notice that Carlos's address is missing the state and zipcode fields. 
When this table is queried (see the next readings), those fields would show 
as NULL. 
 

NESTED COMPLEX TYPES 

It's also possible to nest complex types, for example, to have an ARRAY in which 
each element is an ARRAY, or a MAP for which the value is a STRUCT element. 
For the tables above, you might create a contacts column which is a STRUCT with 
two named fields: phones is a MAP and address is another STRUCT. 
 
As you'll see in the next readings, working with a single layer of complex data can 
be difficult; working with a nested layer will be much more difficult. If you do 
need to use nested complex types, we recommend using no more than one 
nested layer. If you find yourself using more (for example, an ARRAY whose 
elements are MAPs, and the values of that MAP are themselves ARRAYs), 
consider whether a different schema design could provide the same information 
in a more digestible way. 
 

CREATING TABLES WITH COMPLEX DATA 

 
The syntax for creating tables that use complex data types is very similar in Hive 
and Impala, but mostly you will be creating tables in Hive. The reason for that 
is Impala only supports the use of complex data in Parquet files , and you 
cannot load complex data into a table using INSERT or LOAD statements in 



Impala. If you don't have the data file in Parquet format, you can create the table 
in Hive, then create a copy using CREATE TABLE … AS SELECT, with STORED AS 
PARQUET. You then can query the table in Impala. 
The examples below assume you are using text files to store the data, so the 
delimiters are specified in the ROW FORMAT clause of the CREATE 
TABLE statement. For file formats such as Parquet and Avro, you do not use 
the ROW FORMAT clause; the details of how these formats represent complex 
values are determined by the file format, not by the user. 
If you're using Impala to create the tables, you must be using Parquet files, so 
Impala will never use the ROW FORMAT clause for tables with complex data, and 
you will need to specify STORED AS PARQUET. The CREATE TABLE statements 
otherwise will be the same as the examples shown here. 
(Querying data can be very different, though, so the next two readings will cover 
basic queries in both engines, one at a time.) 
 
 

ARRAY 

An ARRAY type is declared in the column list of the CREATE TABLE statement 
using ARRAY<type>, where type is the simple data type that each element of the 
array will have. 
The following shows the contents of a data file 
called customers_phones_array.csv with three columns: cust_id, name, 
and phones. This will be used as the data for a table using an ARRAY data type 
for phones using ARRAY<STRING> because the phone numbers are given 
as STRINGs. 
    a,Alice,555-1111|555-2222|555-3333 
    b,Bob,555-4444 
    c,Carlos,555-5555|555-6666 
 
Commas separate the customer ID, the customer name, and a list of their phone 
numbers. The phone numbers themselves are separated using the pipe character 
(the vertical bar). Both delimiters need to be declared in the CREATE 
TABLE statement:  
    CREATE TABLE customers_phones_array 
            (cust_id STRING, 
            name STRING, 
            phones ARRAY<STRING>) 



        ROW FORMAT DELIMITED 
            FIELDS TERMINATED BY ',' 
            COLLECTION ITEMS TERMINATED BY '|'; 
 
Recall that if you omit the FIELDS TERMINATED BY subclause, Hive and Impala 
use the default delimiter, which is the ASCII Control-A character. For 
the COLLECTION ITEMS TERMINATED BY subclause, the default collection item 
terminator is the ASCII Control-B character.  
Remember: If you're creating the table using Parquet or Avro data files (and, 
again, Parquet is the only format Impala supports with complex data) omit 
the ROW FORMAT clause and the subclauses specifying the terminators, and 
include a STORED AS clause. 
 
 

MAP 

A MAP type is declared in the column list of the CREATE TABLE statement 
using MAP<keytype, valuetype>. Notice that the keys—in the phones example, 
this would be home, work, and mobile—are not defined in the CREATE 
TABLE statement. This means new keys could be added to the data without 
updating the table definition. 
The following shows the contents of a data file 
called customers_phones_map.csv with the same three columns as in the ARRAY 
example: cust_id, name, and phones. In this case, though, phones will 
use MAP<STRING,STRING> because both the key (type of number) and the value 
(the phone number itself) are both given as STRINGs. 
    a,Alice,home:555-1111|work:555-2222|mobile:555-3333 
    b,Bob,mobile:555-4444 
    c,Carlos,work:555-5555|home:555-6666 
 
Again, as with the ARRAY example, commas separate the customer ID, the 
customer name, and the list of their phone numbers. The key-value pairs are 
separated using the pipe character (the vertical bar) again, and colons are used to 
separate the key from the value in each pair. All three delimiters need to be 
declared in the CREATE TABLE statement:  
    CREATE TABLE customers_phones_map 
            (cust_id STRING, 
            name STRING, 



            phones MAP<STRING,STRING>) 
        ROW FORMAT DELIMITED 
            FIELDS TERMINATED BY ',' 
            COLLECTION ITEMS TERMINATED BY '|' 
            MAP KEYS TERMINATED BY ':'; 
 
The default terminators are the same as with ARRAY, but now you also have 
the MAP KEYS terminator. The default (if you omit the MAP KEYS TERMINATED 
BY subclause) is the ASCII Control-C character. 
Remember: If you're creating the table using Parquet or Avro data files (and, 
again, Parquet is the only format Impala supports with complex data) omit 
the ROW FORMAT clause and the subclauses specifying the terminators, and 
include a STORED AS clause. 
 
 
 
 

STRUCT 

A STRUCT type is declared in the column list of the CREATE TABLE statement 
using STRUCT<field1:TYPE1, field2:TYPE, …>. The order of the STRUCT fields in 
the table definition must match the order in the data files.  
The following shows the contents of a data file called customers_addr.csv with 
the three columns: cust_id, name, and address. Here, address will use 
a STRUCT type with four named fields: street, city, state, and zipcode. All 
are STRINGs except zipcode, which is an INT. 
    a,Alice,742 Evergreen Terrace|Springfield|OR|97477 
    b,Bob,1600 Pennsylvania Ave NW|Washington|DC|20500 
    c,Carlos,342 Gravelpit Terrace|Bedrock 
 
A STRUCT contains a predefined number of named fields, but fields can be 
missing. In this example, Carlos’s address is missing the state and zipcode fields, 
so queries will return NULL for these missing fields. 
Again, as with the ARRAY example, commas separate the columns. The fields in 
the STRUCT are separated using the pipe character (the vertical bar). Both 
delimiters need to be declared in the CREATE TABLE statement: 
    CREATE TABLE customers_addr 
                (cust_id STRING, 



                name STRING, 
                address STRUCT<street:STRING, 
                                                city:STRING, 
                                                state:STRING, 
                                                zipcode:INT>) 
        ROW FORMAT DELIMITED 
            FIELDS TERMINATED BY ',' 
            COLLECTION ITEMS TERMINATED BY '|'; 
 
The default terminators are the same as with ARRAY. 
Note that unlike MAPs, the “keys” of a STRUCT (the names of its fields) 
are not part of the actual data. So if we changed the name 
from zipcode to postalcode, we would not need to update the underlying data in 
the data file. 
 
Remember: If you're creating the table using Parquet or Avro data files (and, 
again, Parquet is the only format Impala supports with complex data) omit 
the ROW FORMAT clause and the subclauses specifying the terminators, and 
include a STORED AS clause. 
Try It! 
Do the following to create tables that you can query in the next readings. 

1. Use Hive to create the example tables for each of the three types, and load 
the data with your preferred method. The data for each example is on the 
VM in /home/training/training_materials/analyst/data/. The data files are 
named customers_phones_array.csv, customers_phones_map.csv, 
and customers_addr.csv. 

Use Hive to create a Parquet version of each table so you can also query the data 
with Impala. For each table, run a CTAS statement and use STORED AS PARQUET. 
To make things easier when you query these tables with Impala, name the 
tables phones_array_parquet, phones_map_parquet, 
and customers_addr_parquet. 
 
If you prefer to use something shorter, please do, but you'll need to make 
adjustments when you complete the exercises in the “Querying Complex Data 
with Impala” reading. 
    For example: 



    CREATE TABLE phones_array_parquet 
        STORED AS PARQUET 
        AS SELECT * FROM customers_phones_array; 

  

QUERYING COMPLEX DATA WITH HIVE 

 
A Hive query can select a full complex column simply by including the bare name 
of the column in the SELECT list. For example, this query selects the 
full ARRAY column named phones. Hive displays the full phones column in the 
results, using square brackets and commas to represent the ARRAY structure: 
 
    SELECT name, phones FROM customer_phones_array; 

name phones 

Alice [555-1111, 555-2222, 555-3333] 

Bob [555-4444] 

Carlos [555-5555, 555-6666] 

For access to the elements within the different complex data types, you have to 
use different syntax depending on the complex type.  
Note: The syntax in this reading is for Hive only. See “Querying Complex Data with 
Impala” for the syntax to use with Impala. 
 

QUERYING ARRAYS WITH HIVE 

To query an element within an ARRAY, use an array index number in square 
brackets. The array index starts at 0. For example, to get the first and second 
phone numbers in phones, use this query: 
    SELECT name, phones[0], phones[1] 
        FROM customers_phones_array; 
Since Bob has only one phone number, the query returns NULL for Bob’s second 
phone number. 
 

QUERYING MAPS WITH HIVE 



Querying an element within a MAP is similar to querying the ARRAY element, 
except you use the key instead of the index. For example, to get the home phone 
numbers, use this query: 
    SELECT name, phones['home'] AS home 
        FROM customers_phones_map; 
In this example, the MAP keys are strings, so you must quote the literal string 
within the square brackets. MAP keys are case-sensitive, 
so 'HOME' or 'Home' would not work in this case.  
Since Bob has only a mobile phone number, the query returns NULL for Bob’s 
home phone number. 
 

QUERYING STRUCTS WITH HIVE 

To query a field from a STRUCT column, use the column name, a dot, and the field 
name (similar to how you can use the database name, a dot, and the table name 
to refer to a table in a different database from the active one). For example, this 
query selects the name column, and the state and zipcode fields from 
the address column: 
    SELECT name, address.state, address.zipcode 
        FROM customers_addr; 
In this example, Carlos’s address is missing the state and zipcode fields, so the 
query returns NULL for these missing fields. 
Try It! 
Do the following to run two queries on each of the three (non-Parquet) tables you 
created in “Creating Tables with Hive and Impala.” Use Hive for these exercises. 
First, run SELECT * FROM tablename; for each table and note how the complex 
column appears in the results. 
 
Then, run each of the examples in the reading above. Notice the NULL fields in 
each case. 
Optional: Try some other queries for each table. 
 

QUERYING COMPLEX DATA WITH IMPALA 

 
As noted previously, while Impala does support the use of complex data types in 
tables, it does so with some limitations. Remember, Impala supports the use of 
complex columns only in Parquet tables. Also, Impala does not support selecting a 



full complex column simply by including the bare name of the column in 
the SELECT list, as Hive does. If you issue SELECT * queries on a table with 
complex columns, the query will run but the complex columns will be omitted 
from the results.  
 
To access elements within a complex column using Impala, you have to use 
different syntax depending on the complex type. The syntax for accessing ARRAYs 
and MAPs also is different from Hive's syntax. 
Note: The syntax in this reading is for Impala only. See “Querying Complex Data 
with Hive” for the syntax to use with Hive. 
 
Pseudocolumns 
An important concept in working with complex data using Impala 
is pseudocolumns. To understand pseudocolumns, think of an ARRAY 
or MAP complex column as a table within a table. This inner table then has 
columns within it—those are the pseudocolumns. Every ARRAY has two columns 
named item and pos, and every MAP has two columns named key and value. As 
you'll see, you then treat the complex column as if it were a table, and use these 
pseudocolumns to access the elements within the column. 
 
 
 
 

QUERYING ARRAYS WITH IMPALA 

To query an element within an ARRAY, treat the array as a table named 
tablename.arraynamewith the two pseudocolumns mentioned 
above: item and pos. The item pseudocolumn gives the value of 
each ARRAY element. The pos pseudocolumn gives the index of each element 
within the array. The array index starts at 0. For example, to get the first and 
second phone numbers in phones from the phones_array_parquet table, use this 
query: 
    SELECT item  
        FROM phones_array_parquet.phones 
        WHERE pos = 0 OR pos = 1; 
 



Notice that you can use the item and pos pseudocolumns in the WHERE clause as 
well as the SELECT clause. You can also use them in other clauses, just as if they 
were regular columns. 
Just as if this phones column were a regular table, the query results for this 
example will include one row for each phone number. This is different than Hive's 
behavior, which uses a comma-separated list, enclosed in brackets. In the 
“Complex Data in Practice” reading, you'll see how to produce similar output for 
Hive. 
You often will want your query results to include the values from other columns in 
the actual table (such as the name column in phones_array_parquet) along with 
the items in the ARRAY column. The list of phone numbers, without the person 
who has each number, will probably not be useful! You can use join notation to 
return ARRAY elements along with scalar column values from corresponding table 
rows. Typically you use implicit join notation (also called SQL-89-style join 
notation) as shown in the following example. It’s also possible to use explicit join 
notation and to specify different join types, such as LEFT OUTER JOIN, but that’s 
used less often and is not described here. (For more about implicit join syntax, see 
Course 2, Analyzing Big Data with SQL, Week 6, “Alternative Join Syntax.”) 
 
    SELECT name, phones.item AS phone 
        FROM phones_array_parquet, phones_array_parquet.phones; 
 
In this example, the FROM clause includes the base table name, which 
is phones_array_parquet, and the qualified name of the ARRAY column, which 
is phones_array_parquet.phones. These are separated with a comma, which 
indicates an implicit join. Notice that no join condition is specified, because the 
join condition is implied: the ARRAY elements are joined with the rows they came 
from. 
 
The SELECT list can then include any columns from the base table along with 
the item and pos pseudocolumns from the ARRAY column. This example includes 
the name column and the item pseudocolumn in the SELECT list. It’s a good 
practice to qualify the item and pos pseudocolumns with the ARRAY column 
name as shown here (phones.item) but this is not strictly required. 
This may seem a bit complicated, but users often find Impala’s familiar join syntax 
to be more straightforward than what's needed with Hive to get a separate row 
for each ARRAY element (again, see the “Complex Data in Practice” reading). 



 
 

QUERYING MAPS WITH IMPALA 

Querying a MAP column is similar to querying an ARRAY column, but the 
pseudocolumns are key and value, representing the keys and values of 
the MAP elements. For example, to get the home phone numbers, use this query: 
    SELECT value AS home 
        FROM phones_map_parquet.phones 
        WHERE key = 'home'; 
In this example, the Parquet table named phones_map_parquet contains 
a MAP column named phones. The MAP keys hold the label (home, work, or 
mobile) for each phone number, and the associated values hold the phone 
numbers themselves. To query this MAP column, you use the column name 
qualified with the table name in the FROM clause: FROM 
phones_map_parquet.phones. Then you can include one or both of the 
pseudocolumns in the SELECT list or in other clauses such as WHERE. This 
example returns the phone numbers (the values), and only phone numbers with 
the label 'home' will be returned. 
As with ARRAY columns, use join notation to return MAP elements along with 
scalar column values from corresponding table rows.  
    SELECT name, phones.value AS home 
        FROM phones_map_parquet, phones_map_parquet.phones 
        WHERE phones.key = 'home'; 
 
In this example, the FROM clause includes the base table name, which 
is phones_map_parquet, and the qualified name of the MAP column, which 
is phones_map_parquet.phones. They are separated with a comma to indicate 
an implicit join. The SELECT list includes the name column and 
the phones.value pseudocolumn. As with ARRAY, it's a good practice to qualify 
the value and key pseudocolumns with the name of the MAP column, phones. 
Querying STRUCTs with Impala 
The Impala query syntax for STRUCT columns is exactly the same as Hive’s: 
To select a field from a STRUCT column, use the column name, a dot, and the field 
name (similar to how you can use the database name, a dot, and the table name 
to refer to a table in a different database from the active one). For example, this 
query selects the name column, and the state and zipcode fields from 
the address column: 



    SELECT name, address.state, address.zipcode 
        FROM customers_addr_parquet; 
 
Try It! 
Do the following to run two queries on each of the three Parquet tables you 
created in “Creating Tables with Hive and Impala.” Use Impala for these exercises. 
First, recall that you created these tables using Hive, so there's something you 
need to do before you can query the tables with Impala. Do you remember what 
that is? Figure that out and do it.  
Try running SELECT * FROM tablename; for each table. Notice that the complex 
column is omitted from the results. 
Then, run each of the examples in the reading above. Notice the NULL fields in 
each case. (Why does Bob have no row in the MAP example?) 
Optional: Try some other queries for each table. 
 
Complex Data in Practice 
 
While there are several things you may want to do with complex data, here are 
three examples of practical applications. The techniques used for these 
applications are not immediately apparent from understanding basic queries, and 
they must be handled differently between Hive and Impala, so look for the new 
information provided here! 
 
 

COUNTING ITEMS IN A COLLECTION 

ARRAYs and MAPs can contain any number of items; they do not have a fixed 
size. You can use the size function in a Hive query to return the number of items 
in an ARRAY or MAP, but Impala does not have such a function. The examples 
here show how to find the number of items in both engines. 
 

USING HIVE 
Using the size function with Hive is fairly straightforward: 
    SELECT name, size(phones) AS num 
        FROM customers_phones_array; 
 



For this example, the column named phones is an ARRAY column. Using our 
example data from the previous readings, the ARRAY in each row of this column 
contains a different number of items. In the row for Alice, the ARRAY has three 
items; in the row for Bob, the ARRAY has one item; and in the row for Carlos, 
the ARRAY has two items.  
The query uses the size function to return these numbers of items as a column 
with the alias num. Similarly, when you use the size function with a MAP column, 
it returns the numbers of key-value pairs. The size function is an example of 
what’s called a collection function, because it’s a function that operates on 
a collection type, which is another name for a complex type. 
 

USING IMPALA 
As noted above, Impala does not have a size function, nor does Impala support 
any other collection functions. To count the number of elements in 
each ARRAY or MAP using Impala, you need to use join notation and a GROUP 
BY clause to group by a column or columns that have unique row values. You can 
then use the COUNT function, or indeed any other aggregation function, to 
aggregate the elements in each ARRAY or MAP. 
    SELECT name, COUNT(*) AS num 
        FROM phones_array_parquet, phones_array_parquet.phones 
        GROUP BY name; 
 
In this example, the goal is to return each customer’s name and the number of 
phone numbers they have. In the SELECT list, the expression COUNT(*) AS 
num returns a column named num giving the number of records in each group, 
which is the number of phone numbers each customer has. 
 
 

CONVERTINGARRAYS AND MAPS TO RECORDS WITH HIVE 

Recall that Impala's method of querying ARRAY and MAP types provides a 
separate row for each element in the complex column, and you must use a join to 
include values from the other columns in the table. Hive's behavior is very 
different, whichmay seem unusual, because typically Impala aims for a high 
degree of compatibility with Hive’s query syntax. In this case, Impala’s syntax is 
intended to provide greater flexibility. 
 



If you want to use Hive to break the individual items within 
an ARRAY or MAP into a table of results with one item per row, you can do this 
using the explode function. The explode function is an example of what’s called 
a table-generating function; this is a class of functions that can transform a 
single input row into multiple output rows. 
    SELECT explode(phones) AS phone 
        FROM customers_phones_array; 
 
In this example, the explode function is applied to the ARRAY column 
named phones, and it returns a column with the alias phone. It returns one 
output record for each item in the ARRAY column. Using the same example data 
as in the previous readings, there are a total of six phone numbers in the 
ARRAY column (three for Alice, one for Bob, and two for Carlos). This means the 
output contains six records.  
Since the MAP type has two parts to it, the key and the value, explode returns 
two values. You can use the same syntax exceptfor the alias—if you use an alias, 
you must supply two values: 
 
    SELECT explode(phones) AS (type, number) 
        FROM customers_phones_map; 
 
The result set would again have six rows, each with two 
columns: type and number. If you omit the alias, the columns would be 
called key and value. 
When you use a table-generating function like explode, you cannot include any 
other columns in the SELECT list of your query. However, you can overcome this 
limitation by using a lateral view, which first applies the table-generating 
function to the ARRAY or MAP column, then joins the resulting output with the 
rows of the table. Lateral view syntax is similar to explicit join syntax; in the FROM 
clause, include the name of the base table, then the keywords LATERAL VIEW, 
followed by the explode function applied to the ARRAY or MAP column. 
 
    SELECT name, phone 
        FROM customers_phones_array 
        LATERAL VIEW 
            explode(phones) p AS phone; 
 



In the example here, a lateral view is used to return values from the name column 
along with the individual phone numbers. The table alias, p in this example, is 
required, even if you don't use it anywhere else in the query.The column 
alias, AS phone in this example, is optional. 
For the MAP version, again you need two column aliases—but without 
parentheses in this case: 
 
    SELECT name, type, number 
        FROM customers_phones_map 
        LATERAL VIEW 
            explode(phones) p AS type, number; 
 
 

DENORMALIZING TABLES USING COMPLEX DATA 

A potential use for complex data is denormalizing tables with a one-to-many 
relationship. Normalized tables (using Third Normal Form) cannot have a 
repeating groups—that is, a single row should not have multiple values for one 
type of data. For example, a toy company likely has many products; a table listing 
different toy makers (like the makers table in the toy database) would not include 
all Hasbro's products in the same row. 
 
Instead, you typically have a second table in which each row holds one of those 
values along with a foreign key that identifies which row in the first table that 
value belongs with. In the toy company in example, the toys table has one row for 
each toy, and the maker_id column identifies which company from 
the makers table makes that particular toy. Joining the columns using the maker's 
identification number allows you to identify all the toys made by a particular 
company. 
 
The complex column types allow analysts to reshape tables into a denormalized 
form. The resulting revised data model can support queries of the combined data 
elements from one table, without any join required. In big data, you can expect a 
query that does not require a join to be significantly faster than one that does 
require a join.  
 
The rest of this section describes how to set up and query such a table, using the 
toy example. You don't need to memorize these steps or the functions involved. 



 

CREATING THE DENORMALIZED TABLE 
The makers_with_toys table defined below could hold each toy maker with its 
information, including a list of its toys (and the MSRP, manufacturer's suggested 
retail price) in the same row, using an ARRAY with STRUCTs as its elements. (The 
table uses Parquet files so you can query it with Impala. You can create this table 
in either Hive or Impala.)  
    CREATE EXTERNAL TABLE toy.makers_with_toys ( 
            id INT, 
            name STRING, 
            city STRING, 
            toys ARRAY<STRUCT <toy_name:STRING, price:DECIMAL(5,2)>>) 
        STORED AS PARQUET; 
 

POPULATING THE DENORMALIZED TABLE 
 
The next step is to load the data into the table. Because Impala can't load data 
into Parquet files, this step must be completed with Hive. 
Use the named_struct function to cast a row of the detail table (in this case, toys) 
into the STRUCT. Then use the collect_list function to collect multiple rows into 
the ARRAY. (These functions are probably new to you, because none of the 
courses in this specialization have introduced them before now. Consult the Hive 
documentation if you want to learn more about these functions.) 
 
    INSERT OVERWRITE TABLE toy.makers_with_toys 
        SELECT m.id, m.name, m.city, 
                collect_list(named_struct('toy_name', t.name, 
                                                                 'price', t.price)) 
            FROM toy.makers m LEFT OUTER JOIN toy.toys t 
                ON (m.id = t.maker_id) 
            GROUP BY m.id, m.name, m.city; 
 

QUERYING THE DENORMALIZED TABLE 
 
You now can query the table with Hive or Impala, using the syntax for the engine 
you're using. For example, you can find the price of the most expensive toy for 



each maker using the following query with Impala. Remember to invalidate 
metadata before attempting to run this query with Impala: 
 
    SELECT name, MAX(toys.item.price) AS max_price 
        FROM toy.makers_with_toys, toy.makers_with_toys.toys 
        GROUP BY name; 
 
Note that to query the elements in the ARRAY column (toys), you need to 
reference the pseudocolumn toys.item as the column, but that element is 
a STRUCT. So you then need to use .price to identify the element within 
that STRUCT. 
Try It! 
Try each of the examples above, using both the ARRAY and MAP tables when 
appropriate. 
 
 
 

STORAGE ENGINES 

 

FILE SYSTEMS VERSUS STORAGE ENGINES 

 
Throughout this course, we've talked about how the data for Hive and Impala 
tables is stored in a file system like HDFS or S3. However, that is not the whole 
truth. The vast majority of the time, yes, the data is stored in a file system. 
However, Hive and Impala can also work with data stored in some other systems.  
 
These include Apache HBase and Apache Kudu. These are not file systems. They 
do not store data in files that you can list and access. Instead, these systems 
encapsulate the data storage. They manage the data for you and they abstract 
away the details of how it's stored and accessed. They provide a higher level 
interface to the data. The name we use for these systems, systems like HBase and 
Kudu is storage engines. Hive and Impala have what are called storage handlers 
that allow them to interact with these storage engines. What you can do with 
these storage engines varies depending on whether you're using Hive or Impala. 
Hive can create tables with data stored in HBase and it can query those tables. 



Hive also offers some limited options for managing the data that's in these tables, 
but mostly, you would manage the data in HBase tables from outside of Hive.  
 
Impala can query HBase tables but it cannot create them. You need to create 
them in Hive. Impala can create tables with data stored in Kudu and it can query 
those tables. Impala also has a rich set of options for loading data into Kudu 
tables and managing Kudu tables. Hive currently does not support Kudu tables. 
Also, besides HBase, there are a few other storage engines that it's possible to use 
with Hive, but they're not as widely used and I will not discuss them here. In 
general, there are two main reasons why you would use a storage engine instead 
of a file system with Hive and Impala. One reason is that the data you need to 
query is already stored in one of these storage engines, and using Hive or Impala 
is an easy way to query it. This is a common reason for using HBase with Hive or 
Impala. The other reason is that you need to overcome some of the limitations of 
distributed file systems like HDFS and S3. This is a common reason for using Kudu 
with Impala. So what limitations am I talking about? Well, typically the biggest 
limitation is that files in HDFS and in S3 are immutable. They cannot be directly 
modified. You can delete a file or completely overwrite a file to replace it with a 
new version, but you cannot modify a file in place. You cannot directly modify 
some part of a file.  
 
This makes file systems like HDFS and S3 a poor choice for applications in which 
data needs to be updated frequently. If you took the first course in this 
specialization, you might recall that this is one of the trade-offs between RDBMSs 
and engines like Hive and Impala. RDBMSs are typically a better fit for rapidly 
changing data. However, by using a storage engine like HBase or Kudu to store the 
data, you can overcome this limitation, and you can have frequent updates like in 
RDBMS and the scalability and lower cost of open source Big Data systems. Kudu 
in particular, is an attractive choice when you need to enable real-time analytics 
on rapidly changing data. It's designed specifically to enable this and you can 
query Kudu tables with Impala the same way you query other Impala tables. The 
remainder of this lesson provides some further details about Kudu.  
 

OVERVIEW OF APACHE KUDU 

 
Apache Kudu is an open source storage engine designed to handle very large 
amounts of data—terabytes or even petabytes. Kudu stores data directly on the 



file system of the machine it's running on. In other words, it's not built on top of 
an underlying distributed file system, as some storage systems are. (Apache 
HBase, for example, is built on top of HDFS.) 
 

Kudu structures data as tables much like those in a relational database, but with 
the ability to scale to support more data and higher throughput than traditional 
RDBMSs. This means it provides excellent performance for analytical queries 
through mechanisms like SQL, while also offering great performance for 
workloads common in online databases, such as random access and lookups and 
updates by key. 
 
Many storage systems excel at one or the other of these types of access patterns. 
Kudu excels at both, making applications simpler to develop and more scalable. 
   

FEATURES 

In order to provide performant storage for applications that use a variety of 
access patterns, Kudu offers high throughput for scans through large portions of a 
table's data, as required by analytical use cases. It also has low latency to support 
quick access to individual rows or groups of rows. 
 
Another key Kudu feature is its support for atomic transactions, much like 
traditional databases. This means that when you write data to a row, if any part of 
the operation fails, the entire operation fails, so you don't end up with data in an 
inconsistent state. Kudu supports atomic transactions for single-row operations, 
but not for multi-row or multi-table transactions. 
 

KUDU ARCHITECTURE 

Kudu runs on a cluster of machines, which can range in number from just a few 
machines to thousands. These machines collectively store and manage Kudu's 
data. (Note that the Kudu cluster is distinct from the Hadoop cluster that includes 
HDFS, although hosts can be part of both.) The cluster architecture is designed for 
fault tolerance and high availability—meaning that the system will always be able 
to respond to client requests to read and write data. Kudu clusters are also easily 
scaled by adding more nodes to the cluster as your storage and throughput needs 
increase. 
 



Kudu's architecture is based on tablets, each containing a subset of the data in a 
table. Instead of storing the data in a table in a single location, Kudu distributes 
the table's tablets to multiple machines in the cluster. Those machines store the 
tablet's data on their local disks and respond to client requests to read and write 
table data. Tables must have primary keys, and the table data is distributed using 
hash or range partitioning (and possibly both), with columnar storage. (See the 
reading on Parquet files in Week 3 for more on columnar formats.)  
 

KUDU AND IMPALA 

Apache Impala is tightly integrated with Kudu to enable data analysts, data 
scientists, and developers to access data in Kudu using common SQL syntax. Kudu 
supports most Impala SQL commands, which you can use to create and modify 
Kudu tables; insert, modify, and delete data; and issue queries. The details are 
beyond the scope of this course. 
 

FOR MORE INFORMATION 

The following offer more information on Apache Kudu:  
Apache Kudu Overview (on the official website) 
Introduction to Apache Kudu (a training course available for purchase from 
Cloudera) 
Kudu: Storage for Fast Analytics on Fast Data 
Documentation for using Impala with Kudu 
Impala Guide: Using Impala to Query Kudu Tables 

https://www.cloudera.com/about/training/courses/intro-apache-kudu.html
http://tiny.cloudera.com/Kudu_Paper
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