
WEEK 2
LEARNING OBJECTIVES

 Use Hue to execute SQL statements
 Use SQL utility commands to explore and navigate databases and tables
 Provide some examples of interfaces other than Hue
 (Honors) Use command line interfaces to run SQL commands on big data

systems

REVIEW AND PREPARATION

This course is the second in the specialization Modern Big Data Analysis
with SQL from Cloudera. The first course in this specialization, Foundations
for SQL on Big Data, teaches the key concepts behind relational databases,
SQL, and big data. In this video, I'll do a whirlwind review of that first
course to ensure you're prepared for this second course. If you already
took the first course, that's great, and this will just be a quick recap for
you. If not, then this video should help you to understand what it's about
so you can decide whether to take that first course before continuing with
this second course. So here's that first course in a nutshell. Data analysis
begins with data. Somewhere in the data, you'll often find informa tion that
you need to answer questions. Finding that information isn't always easy,
but organizing the data allows you to find it more quickly and efficiently.
Relational database systems and SQL are popular because they allow you to
do just that, organize data, so it's easier to work with. SQL enables you to
perform four categories of activities with relational databases.
Designing using SQL's Data Recognition Language, or DDL.
Updating using Data Manipulation Language, DML.
Retrieving using Data Query Language, DQL. And
managing using Data Control Language, DCL.
SQL statements fall into these four categories. It's common to use SQL with
two different types of relational databases. Operational databases, which
are mostly used to store rapidly changing data about the current state of a
process or business. And analytic databases, which are mostly used for
answering questions about more static data, sometimes going back many
years. The design of the tables in a database affects the type of data you
can store and use.

So the way you intend to use your data will inform how the database
should be designed. For an operational database, you'll typically use a well
normalized design. But for an analytic database, you will often de-
normalize your tables. When it comes to analysis on big data, there's often
a much larger volume and a greater variety in the data. And this drives
many of the decisions about how data is stored and processed. Traditional
database systems have their place with smaller datasets, but they become
too slow and storage becomes too expensive for very large scale data.
These traditional systems also require the data to be highly structured. But
there is a type of newer distributed SQL engine that can work with much
larger datasets and can handle semi-structured and unstructured data as
well, enabling you to answer a larger variety of questions.

Modern distributed engines use their own dialects of SQL, which provide
features that are helpful for working with big data. This includes different
options for storing data, a separation of the metadata from the data itself,
and loose coupling between the SQL engine and the metadata and data it
operates on. However, the basics of the data query language, the select
statement, that's used with these distributed engines is mostly the same as
with traditional relational databases. So if you have some experience with
SQL queries, you'll be able to reuse many of those skills with these engines.
Two examples of this type of distributed query engine are Hive a nd Impala.
Both are designed for use as analytic databases. These are two different
SQL engines, but they can both operate on a shared set of metadata and
data.

Some of the parts of the SQL language that are important when you're
working with a traditional relational database are not relevant when you're
working with these distributed big data query engines like Hive and Impala.
This specialization focuses on the skills that do apply when you're doing
data analysis in this big data world. The final part of the first course shows
how to set up the virtual machine, or VM, that you'll use for hands-on
exercises and practice in this course. If you haven't yet set up your VM, the
document attached to this video provides instructions to help you do that.
If the topics I've described in this video all sound familiar to you, then
you're ready to take this course. But if some of these topics were
unfamiliar, then you probably need more of a conceptual foundation

before you're ready to take this course. If that's the case, I recommend
completing the first course in this specialization, Foundations for SQL on
Big Data, before you continue with this course. SQL and want to know how
it relates to this course.

(Optional) What about Spark SQL?

The first video in this course listed several open source distributed SQL engines
that are capable of querying extremely large datasets:

 Apache Hive
 Apache Impala
 Presto
 Apache Drill

This list did not include Spark SQL. This optional reading briefly explains what
Spark is, what Spark SQL is, and why Spark SQL was not included on this list.

WHAT IS APACHE SPARK, AND WHAT IS SPARK SQL?

Apache Spark is a large-scale data processing engine. It is capable of running a
wide range of different data processing workloads. Apache Spark provides several
libraries for performing different kinds of work. One of these libraries is Spark
SQL.

Spark SQL is Spark’s library for working with structured data. The name “Spark
SQL” seems to suggest that the SQL query language is the central piece of this
library, but it is not. Support for the SQL query language is just one part of what
Spark SQL provides. Spark SQL also provides programming interfaces for several
programming languages (Scala, Java, Python, and R) that are not based on the SQL
query language.

Who Uses Spark SQL?

Spark SQL is most often used by data scientists, data engineers, and big data
application developers. Spark SQL helps those types of users work with structured
data inside their Spark applications.

Spark SQL is not widely used by data analysts. Compared to Hive and Impala,
Spark SQL is not as well-incorporated into the ecosystem of tools that data
analysts use. The lack of integration, tooling, and support for Spark SQL has
limited its use by data analysts. Furthermore, the architecture of Apache Spark
makes Spark SQL inherently less efficient as a query engine for data analysts than
purpose-built query engines like Impala.

However, there have been some recent efforts to make Spark SQL a more viable
alternative for data analysts running interactive SQL queries. If these efforts prove
successful, we will consider adding more details about Spark SQL to this course.
But at the current time, the number of data analysts using Spark SQL remains
relatively small, and there are obstacles to its broader use. As a result, we
recommend that data analysts focus on learning Hive and Impala.

SPARK SQL IS COMPATIBLE WITH HIVE AND IMPALA

The good news is that Spark SQL was designed to be highly compatible with Hive
and Impala. Spark SQL can query the same tables that Hive and Impala can, and
the Spark SQL query syntax is almost entirely compatible with Hive’s query syntax.
So even though this course does not mention Spark SQL by name (except in this
reading), you can take the skills you’ll learn in this course and apply them directly
to Spark SQL.

For more information about Spark SQL compatibility with Hive, see
https://spark.apache.org/docs/latest/sql-migration-guide-hive-compatibility.html
(but note that many of the details described there are beyond the scope of this
course).

To help ensure you're in the right place, this reading will describe what's expected
in terms of where you've been and where you're going, and will provide some
advice for how to proceed depending on your current knowledge and experience.

If you want to earn a certificate showing that you completed the whole Coursera
specialization, then please start with Course 1, and proceed to this course after
you’ve completed Course 1. Even if you are not hoping to earn this certificate,
Course 1 is recommended unless you already have significant experience with the

https://spark.apache.org/docs/latest/sql-migration-guide-hive-compatibility.html

structure of traditional RDBMSs and already understand the basics of big data
warehousing. See the “Review and Preparation” to help you judge if you have
enough background on this. (This is not about understanding SQL, but about
understanding how traditional and big data systems are structured.)

If, after these strong encouragements to complete Course 1, you still wish to skip
that course and continue with this one, you should be sure to download and
install the virtual machine (VM) that provides a hands-on environment for testing
and practicing the skills you'll learn in this course. Learners who completed
Course 1 should already have this VM installed, and they should have done some
browsing of databases and tables using the VM. Instructions for downloading and
installing it are available in a separate reading, in this week's materials.

This course is the second course in the specialization. It is suitable for beginners
with no prior experience with SQL. In this course, you'll learn fundamental skills,
not advanced tricks. Some of the more complex and confusing parts of SQL have
been saved for fourth and final course in this specialization. To use a Star Wars
analogy: At the end of this course, you’ll be a SQL Padawan, not a full-fledged SQL
Jedi. Becoming a full-fledged SQL Jedi would require taking the remaining courses
in the specialization, plus gaining some real-world experience.

If you have some familiarity with SQL already, there is still value in taking this
course:

 It will help give you more comprehensive knowledge—unless you’re a total
SQL pro (Jedi!), you’ll definitely learn something you didn’t know.

 It will help you to intuitively understand SQL and to be more fluent in it.

 It will help you to go from using SQL on RDBMSs to using SQL on distributed
big data query engines.

However, you might want to make a few adjustments as you proceed with this
course:

 Move at a faster pace through the materials.
 Start with the assessments to verify your skills and find the pieces that

might be new to you.
 Focus on the parts of SQL that are different in big data query engines like

Hive and Impala than in RDBMSs.

If, on the other hand, you want to learn about SQL so you can use an RDBMS or
some other SQL engine (not specifically Hive and Impala), that's OK too! The VM
includes MySQL and PostgreSQL engines for you to work with. Most of the
datasets used in the materials is available to query using those SQL engines,
though the largest datasets (in the fly database) are not. If you skip over the
pieces that are specific to big data engines, you probably will not pass all the
quizzes, though you should be able to pass most of them.

Finally, each week in this course concludes with an honors lesson. These lessons
mostly focus on using the command line as an interface to the big data SQL
engines (instead of the browser-based graphical interface, called Hue). These
honors lessons are intended for learners who are interested in the Cloudera
Certified Associate (CCA) Data Analyst certification exam. If you would like to
pursue this Cloudera certification (which is different from the Coursera certificate
you receive from passing this course and specialization), these honors lessons will
help prepare you, by helping you work more efficiently (the CCA exam is time-
sensitive) and by providing information and practice using resources you might
not be familiar with.

USING THE HUE QUERY EDITORS

At this point in the course, you should have the VM set up and running.
Throughout the course, you will need to use the VM to follow along with
demonstrations and to complete quizzes and assignments. The two SQL engines
you'll use in this course, Hive and Impala, are both installed on the VM. And all
the data you'll need to query with those engines is preloaded in tables on the VM.
To interact with this data and these query engines, you'll be using Hue. Hue is a
web browser based analytics works bench that provides a user interface to Hive

and Impala. With the VM set up and running, you can open the web browser in
the VM, and click the link in the bookmarks toolbar to access Hue. Hue includes a
number of different interfaces, many of which you will not use in this course.
There are just a few interfaces that you will use.

If you completed the first course in this specialization, you should recall that one
of the Hue interfaces is the Table Browser. Click the icon in the upper left corner,
then under browsers, click Tables. Here in the Table Browser, you can click
Databases to see databases exist. You can see there are databases named default,
fly, fun, toy, and wax. You can click the name of the database to see what tables
are in it. I'll click fun, you can see that the fun database has tables named
card_rank, card_suit, games, and inventory. Then you can click the name of a
table to see more details about that table. I'll click games. If you go to the
columns tab you can see that this games table has eight columns, id, name,
inventor, year, min_age, min_players, max_players, and list_price.

You can also click the Sample tab to see a sample of the data in this table. So the
Table Browser in Hue provides a convenient interface for browsing tables,
through simple point and click actions. And if you completed the first course in
the specialization, you should recall it well. In this course, you'll go beyond simple
point and click actions and learn how to run SQL statements to query the tables.
Hue has a different interface for that. Notice the big Query button in the top bar
in Hue. When you click the right side of this button, a dropdown menu opens.
Under Editor in the dropdown menu, you'll see options for Impala and Hive. There
are some other options below that, you can ignore those for now. I'll click Impala
and this opens the query editor for Impala.

The query for Hive is nearly identical, it says Hive at the top instead of Impala, but
besides that it looks the same. All the features I'll describe here are also available
in the Hive query editor. When you're in the query editor, you can use this assist
panel on the left side to browse the databases and tables. If the assist panel is
hidden, you can click to show it. And you should make sure that the SQL mode is
active at the top of the assist panel. Click this database icon to make sure that's
the active mode. You can use this assist panel to see what databases exist. If
you're already in one of the databases you'll have to click this back arrow to go
back to the list of all the databases. You can click the name of the data bases to
see what tables are in it. If you click the name of a table you'll see the columns in

it. And you can click the letter i icon to the right of a table name to see more
details about the table.

This is all very similar to what you can do through the table browser I showed
earlier in this video. The most important feature of the query editor is this text
area in the centre, where you can enter and edit SQL statements then run them.
We'll be using this extensively throughout the course. When you click inside this
text area, another assist panel opens up on the right side. We will not be using
this assist panel at this point in the course, so you can click to hide it for now.
Throughout the remainder of this course you want to keep the Hue query editor
open in the web browser on your VM.

You'll need to use it in almost every lesson for the rest of the course. So Hue has
sequel query editors for both Hive and Impala, for most of this course, it doesn't
matter which one you use. Most of the SQL statements you'll learn about will
work the same with both Hive and Impala and with most SQL engines too,
including relational databases and data warehouse systems. Whenever I show a
SQL statement that is not broadly compatible across different engines, I'll be sure
to indicate that. Typically, Impala returns query results faster than Hive, so I'd
encourage you to use the Impala query editor throughout this course. The Impala
query editor is the default one.

So if you click the centre of the big Query in the top bar in Hue, that will take you
directly to the Impala query editor. Keep in mind that Hive and Impala are both
accessing the same tables with the same data. These are two different engines
operating on one set of underlying tables and data. So on the VM when you
choose to use the Hive query editor or the Impala query editor, you're simply
choosing which SQL engine will run the queries on that shared set of tables. Also a
quick comment about terminology, the word database as I've used it in this video,
refers to a logical container for a group of tables.

If you're familiar with the concept of a named space, then you can think of a
database as the same thing, it's just an abstract container. In this case, a container
that holds tables. Within one database the tables all need to have different
names. But two different tables can have the same name if they're in different
databases. But this word database also has some broader meanings. Any
organized collection of data can be called a database. SQL engines in general are

often called databases, and one specific instance of a SQL engine is often called a
database. To try to resolve this confusion sometimes people use the word
schema, to refer specifically to a group of tables. In this course, I'll use the word
database not schema, but keep in mind that you might see this word schema used
to mean to same thing, a logical container for a group of tables.

RUNNING SQL UTILITY STATEMENTS

 Recall from the previous video, that Hue enables you to see what databases exist,
switch into a particular database, see what tables are in it, and look at the
columns in those tables, all through point and click actions. In this video, I'll show
how for each of those tasks, you can write and run a SQL Utility Statement that
does the same thing as the point and click action. So if you could do something by
pointing and clicking, why would you want to write a SQL statement to do it?

Well, for one, not all SQL interfaces have a graphical user interface like Hue does.
Sometimes the only way to perform simple tasks like these is by entering and
running SQL statements. Also, an interface like Hue enables you to perform some
simple tasks without using SQL. But as you'll see beginning in the next video, you
can achieve many more types of tasks by entering and running SQL statements.
The first SQL Utility Statement I'll talk about is SHOW DATABASES. This is often
the very first statement you would run when connecting to an instance of a SQL
engine for the first time. It tells you what databases exist. I'll run this statement in
the Impala Query Editor in Hue on the VM to show you what it returns. In the
editor, I'll enter SHOW DATABASES and I'll terminate the statement with a
semicolon.

The convention is SQL is to use a semicolon to indicate the end of every
statement. But here in Hue, if you're just running a single statement, the
semicolon is optional. So you could leave it off. Then I'll click this Execute button
to run the statement. You can also use the keyboard shortcut Control, Enter to do
this. After the statement runs, the result appears directly below. Running this
statement with Impala, you can see the first row of the results list a system
database named, Impala builtins. You can safely ignore that. Below that, you can
see the actual databases. Each one has a name and optionally a comment. You
can see there are databases named default, fly, fun, toy, and wax. When you're
using a SQL engine, there is always one particular database that you're connected

to. This is called the current database or the active database. When you first log
into Hue and open the Hive or Impala Query Editor, the current database is
typically the one named default. Other SQL engines also have particular databases
that they connect to by default at the start of a new session, but they're not
generally named default, and they can vary from user to user.

Usually, if you're going to be working with a particular table, you'll want to set the
current database to the database that contains that table. To set which database
is the current database, you can run a USE statement. The USE statement is very
simple, it's just the keyword USE followed by the name of a database. Hue, which
you'll use throughout this course actually does not support the USE statement.
Instead, in Hue, you always use point and click actions to set the current
database. Just above the editor, there is an active database selector. You can use
that to see what the current database is, right now it's default, and to change the
current database. I'll select fun, and now the current database is fun.

Alternatively, you can click the name of a database in the assist panel on the left
side, and Hue will set that as the current database. In the assist panel, I'll click the
back arrow to go back to the list of all the databases, then I'll click the wax
database. You can see in the active database selector that wax is now the current
database. The current database persists for the duration of your session or until
you change it again. I'll change it back to fun. If you're using a SQL interface that
lacks a point and click interface for switching databases, then you would instead
need to execute a USE statement, like USE fun. Also keep in mind that your
selection of the current database only affects the particular session in which it is
run. Other users in other sessions have their own current databases. Recall that a
database in SQL is just a logical container for a group of tables. So after you see
what databases exist and change the current database, often the next step is to
see what tables exists in the current database. To do this, run the statement
SHOW TABLES. I'll enter and run SHOW TABLES in Hue. The result shows the
names of the four tables in the current database, which remember is the fun
database.

The tables are card_rank, card_suit, games, and inventory. The final utility
statement I'll talk about is the DESCRIBE statement. You can use the DESCRIBE
statement to see what columns are in a table. The syntax is simple, following the
keyword DESCRIBE, you put the name of the table whose columns you want to

see. I know that one of the tables in the fun database is named games. So in Hue,
I'll enter and run DESCRIBE games. The result shows that this table has eight
columns; id, name, inventor, year, min_age, min_players, max_players, and
list_price. Each column also has a datatype and optionally a comment.

You'll learn about data types later in this course. So for now, the column names
and the order they're in are what you should pay attention to. So now you've
seen how to use SQL Utility Statements to explore and navigate databases and
tables. SHOW DATABASES shows you what databases exist, the USE statement
changes the current database, SHOW TABLES shows what tables are in the
current database, and the DESCRIBE statement shows what columns are in a
table. In the next video, you'll see how to run SQL statements to look at the rows
of data in a table.

RUNNING SQL SELECT STATEMENTS

The Select statement is the most important part of the SQL language. The options
for what you can do with a Select statement are so extensive, that Select forms
it's own category of SQL statements called queries. In this video, I'll show you how
to run some very simple Select statements and view the results. The purpose here

is not for you to understand what's possible with the select statement. We have
the whole rest of the course to do that. In this video, you should just focus on the
mechanics of running select statements and viewing the results. On the VM we're
using for this course, you will write and run select statements in Hue, using the
Hive or Impala Query Editor. These queries will execute on Hive or Impala, and
you'll view the results in Hue. In the Impala Query Editor in Hue, I'll enter and run
a simple query to return all the data in a table. The current database is Fun.

I know there's a table named games in this database. To return all the columns
and all the rows from this table, I'll enter the query, "Select star from game." The
star means all the columns. Notice the editor has some auto-complete features
that suggest available database table and column names, and other query syntax.
I'll press the "Execute" button, to run this query. The data that's returned by a
SQL statement is called the result set or just the result. This result set has all five
rows and eight columns from the games table. You can see that this table
contains some information about five different board games, Monopoly, Scrabble,
Clue, Candy Land, and Risk. You can see the columns ID, name, inventor, year, min
age, min players, max players, and list price.

It's important to pause here for a minute to talk about the order of the columns
and rows in the result set. The order of the columns in a result set is determined
by your query, or by the structure of the table you're querying. There's nothing
random about the order of the column. In the example I just showed, the query
returned all the columns. So the result set showed them all. Their order from left
to right was determined by the structure of the games table, ID, name, inventor
and so on. Recall that in the previous video, when I ran the statement, "Describe
games" to see what columns were in the games table, that returned the names of
the same column, in the same order from top to bottom, ID, name, inventor, and
so on. I also have the option to specify in the select statement which columns to
return, and what order I want them in. I'll change, "Select star" to "Select name,
year, inventor".

Then, when I run this query, the results set has just these three columns in the
order I specify, name, year, and inventor, from left to right. So the order of the
columns in a result set is deterministic, but the order of the rows is not. When you
run a select statement using a distributed SQL engine, the order of the rows in the
results set is arbitrary and unpredictable. You could run the exact same query

twice on data that has not changed, and get the rows in a different order each
time. The result overall will be the same, but the order of the rows might vary. So
if you run this query, don't be surprised if the rows you see are in a different
order than when I ran it. This is normal and expected when you're using a
distributed SQL engine.

But you also shouldn't be surprised if the order of the rows in your results are the
same as mine. On the VM for this course, these distributed SQL engines, Hives,
and Impala, are not actually distributed across multiple computers or multiple
processors. We configured the VM to use just one processor on your computer,
and this takes away much of the randomness that causes the rows to get shuffled
around. I'll talk more about row order later in the course. But for now, you should
just remember that the order of the rows is arbitrary. So at this point in the
course, you should have a basic sense of how to enter and run a simple SQL
statement using Hive or Impala through Hue. In the next lesson, we'll talk about
how Hue is not the only application that provides a SQL interface to Hive and
Impala. There are many others. Of course, there are many other SQL engines too.
Then in next week's lessons, we'll go beyond the very simple SQL statements I
showed in this lesson, and we'll begin to reveal the full extent of what's possible
with the select statement.

UNDERSTANDING DIFFERENT SQL INTERFACES

 In the previous videos in this lesson, I presented Hue as the SQL interface to Hive
and Impala. But actually, Hue is only one of many interfaces to Hive and Impala.
Besides Hue, there are a variety of other SQL query tools, sometimes called SQL
clients, that can be set up to work with Hive or Impala, as well as other SQL query
engines. Like the query editors in Hue, these utilities allow you to enter SQL
statements, run them, and see the results. Some of these are Web browser
based, others can be installed on Windows or Mac or Linux. Some are command
line applications, others have a graphical user interface.

There are too many of these to name. But just as one example, there's an open
source one called SQuirreL SQL Client that's been around for a long time. It can be
installed on different platforms and can be configured to run SQL statements on
an instance of Hive or Impala. Many data analysts today need to do more with the
results of a query than just display it in a table. So in the last 20 years or so there
has been enormous growth in the use of analytics and business intelligence, or BI

software, which can create charts and graphs and maps and other data
visualizations based on SQL query results. Again, there are far too many of these
to name, but one of the best known ones is Tableau. Many of these applications
allow the user to manually enter SQL statements to run on Hive or Impala or
other SQL engines.

And many of them can also automatically generate SQL statements as you
interact with them through a graphical user interface. These applications can be
used to create reports, interactive dashboards, and more. All these tools and
applications from the most basic SQL clients, through the most sophisticated
analytics software need some way to connect to an instance of Hive or Impala to
be able to run SQL statements on them. There are a few standard interface
protocols that can be used to do this. The two best known of these are ODBC and
JDBC.

These are two different interface standards that virtually any software can use to
connect to virtually any SQL engine. Both Hive and Impala support both ODBC and
JDBC. Different SQL interface applications typically use one or the other of these
standards. For example, Tableau uses ODBC, and SQuirreL SQL Client uses JDBC.
Also, custom code written by data scientists, data engineers, and developers can
use ODBC or JDBC to connect to SQL engines. Scripts written in popular languages
like Python and R can use either of these standard interfaces to run SQL queries
on Hive or Impala and then process the results. So I mentioned two kinds of user
interfaces, query tools and analytics and BI software, and two underlying
interface standards, ODBC and JDBC.

They can work with most with any SQL engine, including Hive and Impala. But
many SQL engines also have specialized interface applications that are designed
to work only with that one SQL engine. Hive and Impala also have that. Hive
includes a specialized command line interface, or CLI, called Beeline, and Impala
has a specialized CLI called Impala Shell. Both of these are accessed from the
command line or the terminal. And both of these are installed on the VM, so
they're available for you to use in this course.

In the honors lesson, you can learn how to use Beeline and Impala Shell. But the
main point here is that although you'll be using Hue throughout this course, the
SQL statements you'll write can be run in numerous different applications. Hue is

just an interface, and in this course you shouldn't focus too much on the
interface. You should focus on the SQL statements.

(OPTIONAL) USING OTHER SQL ENGINES

Apache Hive and Apache Impala are open source big data SQL engines that are
the primary focus of this course and specialization, but you might be interested in
learning or using some other SQL engines, as well.

Two very popular SQL engines are MySQL (pronounced “my ess cue ell”) and
PostgreSQL (pronounced “post gress cue ell”). Both are traditional open source
relational database management systems (RDBMSs); they cannot work with really
big data like Hive and Impala can, but they are often used to store small- to
medium-sized data. You can run SELECT queries on that data, just like you can
with Hive and Impala.

In the VM, we have installed MySQL and PostgreSQL. All the tables from
the default, fun, and wax databases in Hive and Impala have been loaded into
tables in MySQL and PostgreSQL so you can query them there. The tables from
the fly database in Hive and Impala have not been loaded into MySQL and
PostgreSQL; those are only available to query with Hive or Impala.
Hue has been configured with query editors for these other SQL engines also, so
you can practice using them. You can access them from the Query drop-down
menu. Click the down arrow beside the Query button, and choose which editor
you want to use.

When you first enter the editor, you need to switch to either the mydb database
(for MySQL) or the public database (for PostgreSQL) by selecting it as the active
database. MySQL doesn't really have a default database in Hue. It will not let you
run any queries, even those that have no table references, if default is still the
active database. PostgreSQL will still allow you to run queries, but it will be much
easier if you switch databases.

LEARNING OBJECTIVES

 Construct working SELECT statements as a foundation for more advanced
statements

 Write expanded SELECT statements that include expressions and functions
 Use the FROM clause to specify the table from which the SELECT statement

retrieves data
 Identify rules and conventions regarding keywords and identifiers in SQL
 (Honors) Use Beeline and Impala Shell in non-interactive modes

Introduction

Welcome to week two of analyzing big data with SQL. In the previous week's
lessons, you ran some simple SELECT statements, but you did not yet use the
SELECT statement to do data analysis. You just use it to do some simple data
retrieval. Data retrieval is important and it's definitely something you'll do with
the SELECT statement, but what the SELECT statement can do goes far beyond
just data retrieval. Data analysis is when you try to answer questions using the
data or you tried to discover things in the data like patterns and outliers.

Sometimes the term data mining is used to refer to the practice of discovering
things in the data, but I'll stick to the broader more popular term, data analysis.
To do data analysis, you need to do more than just to retrieve data, you also need
to manipulate or transform data in different ways.

These two terms, to manipulate and transform, refer broadly and generically to
any operations performed on data. Later, you'll learn some related terms that
have more narrow specific meanings. In this course when I talk about
manipulating or transforming data, I'm not talking about changing the existing
data in the tables. I'm talking about reading the existing data from the tables
essentially making a copy of it and then manipulating the copy, and returning the
manipulated copy as the result. So for this entire course, you can consider the
data in the tables to be immutable, it cannot be altered or modified in place.
Throughout this course you will never alter or modify the data in the tables.

Also, this word manipulate or manipulation has some negative connotations in
common use like currency manipulation or psychological manipulation. It can be
used to mean falsify or modify unfairly. But in the context of SQL and data
analysis, it has no negative connotations, it just means to perform some
operations on data to generate a result. So typically, the practice of data analysis
is prompted by questions or by the need to make decisions that are informed by
the data. In this week of the course and throughout the remaining weeks, I'll
teach you how to answer different types of questions using SELECT statements.
You'll learn the fundamentals of data analysis with SQL including some rules and
conventions, and you'll do some simple data retrieval too.

SQL SELECT BUILDING BLOCKS

In this video, you'll learn about the building blocks of a SELECT statement called
clauses. A SELECT statement is made up of one or more clauses. The next several
weeks of the course are structured around these different clauses. The order in
which I'll teach them matches their correct order within a SELECT statement. First,
you'll learn about the SELECT clause, which specifies what columns should be
returned in your query result.

Next, you'll learn about the FROM clause, which specifies where the data you are
querying should come from. Then you'll learn about the WHERE clause, which
filters the rows of the data based on one or more conditions. Next is the GROUP
BY clause and the related topic of aggregation, which can be used to split the data
into groups and then reduce each group down to a single value. Then you'll learn
about the HAVING clause, which filters the data based on aggregates. Next is the
ORDER BY clause, which sorts or arranges the results of a query. Finally, the LIMIT
clause, which controls how many rows a query can return.

As you learn about these parts of a SELECT statement, you'll see how the different
clauses and combinations of them can enable you to answer different kinds of
questions. Most of what I'll teach is applicable to any SQL engine; Hive and
Impala, other big data SQL engines, and traditional relational database systems.
But there are some differences in the SELECT syntax across the dialect of SQL that
these different engines use. I'll teach you about these differences with a particular
focus on the SELECT syntax for Hive and Impala.

If you're new to SQL, this tour through the clauses of the SELECT statement
should give you a straightforward intuitive introduction to the language. Each
week of the course builds on the clauses taught in the previous week. So take
your time and make sure you understand each clause and all the related topics
before moving on to the next one. If you are already familiar with SQL and you're
looking to get proficient with modern distributed SQL engines, then you can
proceed more quickly through the course, and look out for the places where I call
out the important differences between the SQL dialects.

INTRODUCTION TO THE SELECT LIST

 A SELECT statement begins with the keyword SELECT. The part of the statement
starting at the beginning with the keywords SELECT and ending before the
keyword FROM is called the SELECT clause. Everything that comes after the
keyword SELECT in this clause is called the SELECT list. Recall some simple
examples from the lessons in the previous week. In the statement, SELECT star
FROM games, the SELECT list is simply the star, the asterisk. In the statement,
SELECT name, year, inventor FROM games, the SELECT list is name comma year
comma inventor.

 It's a list of the names of three specific columns separated by commas. You'll also
recall from the previous lessons what the purpose of the SELECT list is. It's to
specify what columns should be returned in the result set. In a SELECT list, the
asterisk symbol which is universally pronounced "star", has the special meaning
all the columns. So when you use the star as your SELECT list, the results will
contain all the columns from the table in the same order that they're defined in in
the table. If you want to return some but not all of the columns, then instead of
using the star, you use a list of the column names separated by commas. When
you do this, then the order of the columns in the results set is determined by the
order of the column names in the SELECT list.

Always remember that the order of the columns in a result set is deterministic,
but the order of the rows is arbitrary. So if you run these statements and the
order of the rows in your results set doesn't match what I show, that's perfectly
fine. This all seems pretty simple so far. But in this lesson and the next one, you'll
learn that there's much more you can do with the SELECT list, going beyond basic
data retrieval and into data manipulation and data analysis. In all of this, the
SELECT list is really important.

So I'm going to take time to cover it thoroughly. During these lessons about the
SELECT list, you'll also learn about some topics that you'll use again later in other
clauses. With many SQL engines, the SELECT clause is actually the only part of a
SELECT statement that's strictly required. With these engines, you can use SELECT
without a FROM clause, but there's a catch. This will only work if you include only
literal values or literals and no column references in the SELECT list. First, here are
a couple of examples that will not work. SELECT star with no FROM clause. Star

means all the columns, but there is no table for the columns to come from, so this
will fail. SELECT name, year, inventor with no FROM clause.

This again will fail because name, year, and inventor are column references, but
the source of these columns is not specified. Here are a couple of examples that
will work. SELECT 42. This returns a single row and a single column containing the
integer number 42. Because 42 is a literal value not a reference to a column in a
table, the statement will run successfully in many SQL engines. SELECT 'foo', 'bar'.
The quoted strings foo and bar here are both literal string values.

The statement returns a single row with two columns containing the three
character strings, foo and bar. The single quotes around these strings tell the SQL
engine to interpret them as literal strings, not column references. In both of these
examples that have no FROM clause, the resultant has just one row. Whenever
you omit the FROM clause, the SQL engine acts like you're querying an imaginary
table with one row and no columns. Since there are no columns, you can
reference, the only thing you can include in the SELECT list are literals. You can
also mix column references and literal values in the SELECT list. But when you do
this, you need a FROM clause to specify what table the columns should come
from.

For example, SELECT 'Board Game', name, list_price FROM games. The single
quotes around Board Game mean that it's a literal string, but name and list_price
with no quotes around them are both column references. The result of this
statement has five rows, that's the number of rows in the games table, and it
includes the name and list_price columns from the games table. It also has the
literal string value Board Game in the first column repeated in every row.
This is what happens when you use literal values in the SELECT list with a FROM
clause. The number of rows in the result is controlled by the table in the FROM
clause and the literal value is repeated in all these rows. In the examples here, I
used single quotes to make literal strings in the SELECT list, and no quotes around
column names in the SELECT list. In a later lesson, you'll learn more about the
rules and conventions for quoting literal strings and column references, and you'll
learn about how different SQL engines do this differently. For now, just remember
literal strings are enclosed in single quotes and column references are just bare
words with no quotes around them.

This is the convention I'll use in this course, and it's a convention that works with
all the major SQL engines. So in this video, I showed how you can use column
references and literal values in the SELECT list, as well as the asterisk symbol
meaning all the columns. But those are not the only things you can include in the
SELECT list, and in the next video, I'll introduce expressions and show how you can
use those in the SELECT list. To successfully answer the in-video questions and to
complete the quizzes in this lesson and in upcoming lessons, you will need to
write and run SELECT statements.

You'll need to run these statements in the VM, in the Hue Query Editor or perhaps
in Beeline or Impala shell, and then use the results to get the right answers. I'll
start by asking you to query some of the smaller tables in the VM which are in the
default database and the toy and fun databases. The tables in these databases
have just a few rows and a few columns. Then in later lessons, I'll ask you to query
the table in the wax database which is a little bit bigger, then the tables in the fly
database, some of which are much, much bigger. One of the tables there has tens
of millions of rows. You can also go ahead and explore these tables on your own
and try running various SELECT statements on them but for now, you should not
yet try to query the tables in the fly database because I have not yet introduced
the clauses you'll need to work with very large tables.

EXPRESSIONS AND OPERATORS

In the previous video, you learned that a select list can include column references,
literal values, and the asterisk symbol, which means all the columns. In this video,
you'll learn how the select list can also include expressions. An expression in SQL
is a combination of literal values, column references, operators, and functions. I'll
demonstrate this with a simple example. The games table in the fun database has
a column named list_price.

Say I wanted to return the names of these games and their list prices, but with a
five dollar shipping fee added to the price. To do this, I would use the query
SELECT name, list_price plus five FROM games. Then in the results set, the first
column is just the names of the games, but the second column gives the values in
the list_price column with five added to each one. $19.99 plus $5 is $24.99, 17.99
plus 5 is 22.99, and so on. In this SELECT list, name is just a column reference, but

list_price plus five is an expression. It consists of a column reference, list_price, an
operator, the plus sign, and a literal value, five.

When the SQL engine evaluates the expression, it returns a result column in
which the value in each row is the value of list_price in that row plus five. Here's
another example of an expression. This one uses a function instead of an
operator. SELECT name, round list_price FROM games. The round function rounds
the decimal numbers to the nearest whole number. So in this case, it rounds each
list_price to the nearest dollar, 19.99 rounds to 20, 17.99 rounds to 18, and so on.
The SQL engine applies the round function to the value of list_price in each row.
These example expressions were very simple, but expressions in SQL can be
arbitrarily complex so long as they're composed of literal values, column
references, operators, and functions put together in a valid way. Round is an
example of a built-in function. You'll learn more about built-in functions in the
next lesson. But in this lesson, I'll talk more about operators like the plus sign in
the first example. The plus sign is of course the addition operator.

It adds together numeric values. This is just one of many operators in SQL. There
are too many for me to cover them all right now, so in this lesson, I'll just cover
the common arithmetic operators, and I'll cover other types of operators later in
the course. In addition to the plus sign, the other common arithmetic operators
are the minus sign for subtraction, the asterisk for multiplication, the front slash
for division, and the percent sign which is the modulo operator. Plus and minus
can both be used as unary operators or binary operators. Unary means having
only one operand, or only one argument. Here's an example of the minus sign
being used as a unary operator. The minus sign before list_price flips the sign of
the numbers in this column, and since all these numbers are positive, they're all
changed to negative in the results set. There's only one operand in this expression
list_price, and the operator, the minus sign comes before it.

You can also use the plus sign in this way as a unary operator before a numeric
operand, but it just returns the numeric column with its sign unchanged. So
there's no point in using it. All four of the common arithmetic operators can be
used as binary operators, meaning that there's an operand on both sides of the
operator: the left and right sides. With binary numeric operators, the operand on
both sides can be a literal numeric value, or a reference to a numeric column. So
for example, using the games table, you could use any of these expressions: two

plus five, max_players minus min_players, list_price divided by 2, 1.05 times
list_price, list_price modulo one.

are all valid expressions. You can also use an expression on one or both sides of
the operand, like list_price divided by two times 1.05. That takes list_price and
divides it by two, and then take that result and multiplies it by 1.05. But when
you're using expressions like this that have multiple operations, be mindful of the
rules of order of operations. See the reading for more information about that.
Also, a warning about the division operator in SQL.

In Hive, and Impala, and MySQL, and some other SQL engines, the division
operator, the front slash, always performs decimal division. That means if both
operands are integer numbers and the numerator on the left side does not divide
evenly in whole numbers into the denominator on the right side, then the result
will be a decimal number. For example, 5 divided by 2 is 2.5. That's what Hive, and
Impala, and MySQL all return, but not all SQL engines work this way.

Some engines like PostgreSQL will perform integer division in this case and will
return two instead of two and a half. See the reading for more information about
that. The reading also explains what the modulo operator does. An easy way to
try out these different operators is to use them with literal operands in a SELECT
statement that has no FROM clause. As I mentioned in the previous video, many
SQL engines do not require a FROM clause, and this is especially useful when
you're trying out operators and functions. This works with Hive, Impala, MySQL,
PostgreSQL, and others. There are other SQL engines that do not allow you to
omit the FROM clause, and in these, there's usually some other technique you can
use, like using a dummy table, or some other special syntax in the FROM clause. If
you're using one of these other engines, search for information about how to
select without a table with the specific engine you're using. The example
expressions I showed in this video were very simple, but expressions in SQL can
be arbitrarily complex, so long as they're composed of literal values, column
references, operators, and functions, and they're put together in a valid way.
Throughout the remainder of the course, you'll have a chance to practice writing
progressively more complex expressions.

ORDER OF OPERATIONS

When using arithmetic expressions, care must be taken to ensure they're
evaluated the way you want them to be. For example, someone might think this
expression:

2 + 3 * 3 * 5

would be evaluated left to right. First 2 + 3 is 5, then multiply that by 3 to get 15,
and finally multiply that by 5 to get 75. Some four-function calculators (with only
the four basic operations) still work this way.

However, operators typically are given a conventional of order precedence that
you probably have seen before. First, multiplication and division, including the
modulo operator, are evaluated from left to right. Then addition and subtraction
are evaluated from left to right. You can add parentheses to the expression to
override this, so that addition or subtraction can be done first.
Note that functions are evaluated with the same precedence as parentheses.
(This is easy to remember because function calls also use parentheses.)

Here are some examples:

Expression Evaluation Explanation

2 + 3 * 3 * 5
2 + 9 * 5 = 2
+ 45 = 47

The multiplication 3 * 3 * 5 would be
done first, so the expression becomes 2
+ 45, which is 47.

(2 + 3) * 3 * 5
5 * 3 * 5
= 15 * 5 =
75

The parentheses force the addition be
done first: 2 + 3 is 5, so the expression
becomes 5 * 3 * 5, which is 75.

(2 + 3 * 3) * 5
(2 + 9) * 5
= 11 * 5 =
55

The expression in the parentheses is
done first, but within that expression,
the multiplication is done first. So 2 + 3
* 3 becomes 2 + 9, still in parentheses,
which is 11, and the 11 is multiplied by
5 to get 55.

SUM(numbers) * 3 *
5 (where numbers is a

5 * 3 * 5
= 15 * 5 =
75

The SUM function adds all the values in
the column, which in this case has only

Expression Evaluation Explanation

column with two values, 2
and 3)

two values, 2 and 3. The sum is 5 and
the expression becomes 5 * 3 * 5.

Division is unlike the other three basic arithmetic operations (addition,
subtraction, and multiplication), because while you can add, subtract, or multiply
integers and still get another integer, you can't always divide two integers and get
back an integer. Because of that, many programming languages, including SQL,
offer more than one division operator.

There are three approaches that one can take with division. For an example, think
about separating 17 items into 5 groups (as equally as possible). The three
approaches you can take are:

1. Use decimal division. That is, the result of the division can be something
other than an integer. For example, 17 divided by 5 is 3.4. If the items can
be split, like sharing 17 biscuits with 5 people, this could work—each
person gets 3 whole biscuits and 0.2 of another. But if the items are people
(maybe you're trying to transport 17 people in 5 cars) this doesn't quite
work.

2. Use integer division. That is, you only care about the whole number part
of the division. In the biscuit example, you would have 3 items for each of
the 5 groups. This works if you're sharing 17 biscuits with 5 people, and
anything left over can be given to your dog. With the car example, each car
would have at least 3 people, but some will have to have more (or you
leave a couple of people behind).

3. Use modulo (or modulus). That is, use only the remainder part of the
division. This is what you would use if you want to know how many biscuits
the dog will get, or how many of the 5 cars will need to take one extra
person.

The operator you use in an expression will depend partly on which of these
approaches you intend, but it also might depend on which query engine you are
using. There are three operators used for these three types of division:

 / DIV %

The operator for dividing decimal operands is always /, the forward slash
(sometimes called a solidus or stroke). For example:
25.2 / 3.2 = 7.875
However, this gets more complicated when both of the operands are integers!
Many engines, including Hive, Impala, and MySQL will always consider this
decimal division, regardless of whether the operands are decimal types or integer
types.
Hive, Impala, MySQL: 17 / 5 = 3.4
Other engines, including PostgreSQL and Presto, will use integer division if both
operands are integers. If you want to divide integers using decimal division in
these engines, you must make at least one of the operands a decimal type, for
example by adding .0 to the end of the literal integer.
PostgreSQL, Presto: 17 / 5 = 3
 17.0 / 5 = 3.4
 17 / 5.0 = 3.4
(You will see another way to convert an integer into a decimal type later in this
course.)
For the engines that always perform decimal division using the / operator, even
when the operands are integers, you can use the DIV operator to perform integer
division.
Hive, Impala, MySQL: 17 DIV 5 = 3
If you attempt to use DIV with non-integers, you will get an error message.
Hive, Impala, MySQL: 17.0 DIV 5 = [ERROR]
Finally, modulo is done using the % operator. This can be confusing, because you
are probably used to interpreting this as "percent" (or "out of 100"). But many
computer languages use this as the modulo operator:

17 % 5 = 2
25 % 3 = 1
72 % 8 = 0

Notice that modulo is cyclical, and the only possible results of a % b are numbers
from 0 to b - 1.

3 % 3 = 0
4 % 3 = 1

5 % 3 = 2
6 % 3 = 0
7 % 3 = 1
...

Using % with a non-integer probably should not be needed often, but it is
possible—the result is the remainder after subtracting (or adding if only one
operand is negative) as many of the divisor as possible, without having a negative
remainder. That is, if n = q * x + r where x is an integer and 0 ≤ r < q, then n % q
= r. For example,
25.2 = 3.2 * 7 + 2.8
so
25.2 % 3.2 = 2.8

PRACTICE

Here are a few examples for you to try. Try running SELECT statements in the VM

for these, using Impala or PostgreSQL (or both). Click here for the answers.

A. Use decimal division for these, if possible:

Divide 38.5 by 8

Divide 29 by 5

B. Use integer division for these, if possible:

Divide 38.5 by 8

Divide 29 by 5

C. Use modulo for these, if possible:

Find 38.5 modulo 8

Find 29 modulo 5

DATA TYPES

In the previous lesson, I showed examples of some simple expressions. Like 2 plus
five, max_players minus min_players, and list_price divided by 2. These
expressions use arithmetic operators with numeric operands. In other words, the
literal values and the columns in these expressions are all numeric. If you try to
use arithmetic operators with other types of literal values and columns like
character strings, you will have problems. For example, you should not try to add
five to the literal character string "hello." You should not try to divide the name

https://www.coursera.org/learn/cloudera-big-data-analysis-sql-queries/resources/pI0Ck

"column" in the games table by two, because name is a character string column.
You should not try to take the negative of the name "column". You should not try
to multiply the character string column inventor by the numeric column list_price.

None of these expressions will work. Most SQL engines will throw an error if you
try to use invalid expressions like this in a select statement. Some others like
MySQL will not necessarily throw errors, but will return unexpected results. So
using arithmetic operators forces us to think about the datatype of columns and a
literal values. Datatypes in SQL is a very rich topic. I will not try to cover it in full
detail here, but I will describe some of the fundamentals. In this course, every
column and literal value you'll work with, will fall into two high-level categories of
data types, numeric and character.

 I'll first talk about numeric data types. Within the numeric category, there are a
couple of subcategories. First, there are datatypes for integer numbers. These are
whole numbers, positive or negative with no decimal parts. For example, in the
games table, the min_age, min_players, and max_player's columns are all integer
columns. Also SQL engines interpret literal numeric values as integers, if they do
not have any decimal part. So for example, just the bare number five in an
expression would be interpreted as an integer.

Within this integer subcategory, there are some specific integer data types that
can represent different ranges of numbers. Roughly speaking, numbers up to a
couple a 100 can be represented with the tiny int data type, into the thousands
with the small int type, millions with the integer or int type, and billions in beyond
with the big int type. It's most efficient to use the smallest datatype that will fit
the range of numbers you have, that's why there are different integer types for
efficiency. But the specifics of these different integer types are beyond the scope
of this course. They're covered in the next course, it's part of this specialization.
The other subcategory of numeric types is decimal types. These can represent
numbers that have a decimal part, a fractional part.

The list price column in the games table is an example of a decimal column. Also,
SQL engines interpret literal numeric values as decimals, if they have a decimal
part. So for example, the literal number 2.5 in an expression would be interpreted
as a decimal number. Within this decimal subcategory, there are specific types
named decimal, float, and double, that can store different sizes of both fixed

precision, decimal numbers, and floating point decimal numbers. But the
differences between these are beyond the scope of this course. Some SQL
engines, notably MySQL, can support both signed and unsigned numeric data
types. Signed means that the datatype has a built-in plus or minus sign before the
number. So it can represent both positive and negative numbers.

Unsigned means it can only represent positive numbers. But all the major open-
source distributed SQL engines, Hive, Impala, Presto, Drill, only support signed
numeric types where all the numbers can be positive or negative. So that's all you
need to know about the numeric category of data types. The other high level
category is character data types, which can represent strings of characters. In the
games table, the name and inventor columns are both character string columns.
Of course you can use literal character strings in expressions, by enclosing
characters in quotes.

Within this character category of datatypes, there are some specific data types
that can represent different lengths of character strings. There are types names
string, char, and varchar. But for this course, you do not need to understand the
differences between them. The specific type that Hive and Impala most often use
for character strings, is the one named string. Also, be aware that the word string
is often used in a general sense to mean any character string datatype, not just
the specific datatype named string. There are some additional data types beyond
those I mentioned here, including boolean types, date and time types, and
complex or nested types. I'll mention some of those later in the course. Others
are introduced in later courses that are a part of this specialization.

COLUMN ALIASES

In this video, I'll show you how to control the names of the columns in result sets.
So as you've been running select statements in Hue, or perhaps in Beeline or
Impala shell, you've probably seen that results set has a header at the top, giving
the names of the columns in the result set. When the select list contains only
column references, like in this example, then the result set column names are
unsurprisingly just the same column names you used in the select list. But if you

include literal values in the select list, those don't have names. They're just literal
values. So the SQL engine makes up names for the resulting columns.

For example, in the Impala Query Editor, if I add a third item to this select list,
which is just the literal number five, I'll add it between name and list price, and I
execute the query, the name of the resulting column is five. So Impala names
literal value columns using the literal value itself. Now I will also modify the select
list to change the column reference list price into an expression, list price plus
five. When I execute this query, now the name of the third column in the results
set is listed price plus five. Impala names the columns generated by an expression
using the expression. The behavior of Hive though is different. I'll copy this select
statement, and go to the Hive Query Editor. I'll paste the statement here, and
make sure the current database is fun and execute it. Hive gives names to
unnamed columns in a different way. It names them _c, then a number indicating
which column it is. The leftmost column is zero, the next one is one and so on.
The two unnamed columns in this statement are the second and third from the
left. So they're numbered one and two.

If I reorder the select list, to put the literal value five first before the name
column, then I re-run this statement, now this column containing the five's is the
leftmost column so it's named _c0. So that's how Impala and Hive name the
unnamed columns in a result set. Some other SQL engines do it other ways, and
the exact naming behavior for Hive and Impala also might vary if you're using
some different client instead of Hue or Beeline or Impala shell. Fortunately, there
is a way to control the names of the columns in a result set. You can do this in a
select statement by using Column Aliases. I'll return to the Impala Query Editor,
and recall the previous query from the Query History.

After the literal value five in the select list, I'll add space AS space shipping_fee.
After the expression list price plus five, I'll add space AS space “price with
shipping”, and I'll execute the query. Now, the names of the columns in the
results set are these names I specified in the select list. These names are called
column aliases. You can also use column aliases with column references. The first
column here name, already has a name, but I can use a column alias to give it a
different name in the results set. In the select list after name, I'll add space AS
space game_name. Then, after I execute the query, the first column in the result

set is named game name. With most SQL engines, the AS keyword before a
column alias is optional.

So I can remove the AS before each alias and execute the query again and it
succeeds and gives the same result. But using the AS keyword helps make select
statements more easily readable. So I will typically include the AS keyword before
column aliases throughout this course. There are some rules about what you can
use as a column alias. I'll explain that in detail later in the course. But for now, you
can just remember a few simple rules. You should use only letters, digits, and
underscores in column aliases. You should not use only digits. Also, you should
not use words that have special meaning in SQL as the aliases. For instance, you
should not use the word select as a column alias. You'll learn some more details
about this in a later lesson.

BUILT-IN FUNCTIONS

In an earlier lesson, I described how an expression in SQL is a combination of
literal values, column references, operators, and functions, and I showed some
examples of simple expressions including one that used the round function. The
round function rounds decimal numbers to the nearest whole number. In this
example, it rounds each list price to the nearest dollar. A function is invoked in a
SQL statement by using the function name followed by a pair of parentheses
enclosing the arguments or parameters to the function. When there are two or
more arguments, they're separated by commas. Function names in SQL are
typically not case sensitive, and by convention we write them in all lowercase. The
round function is just one of many functions in SQL.

Functions like round are often called built-in functions because they're built right
into the SQL engine. Different SQL engines offer different sets of built-in
functions, numbering anywhere from about 100 after maybe several 100 different
functions depending upon the engine. In this video, I'll cover some common
mathematical functions, most of which are built into all the major SQL engines.
Round is one of the most basic mathematical functions. Rounding to the nearest
whole number is an elementary concept, but it's a bit more complicated than you
might imagine. When you use the round function with just one argument, then it
rounds to the nearest whole number, to the nearest integer.

So round 19.37 returns 19. But you can also use the round function with two
arguments. The second one specifies how many decimal places to round two. So
round with the first argument 19.37 and the second argument one, we'll round to
one decimal place and return 19.4. Recall that, an easy way to try out these built-
in functions, is to use them with literal arguments in a select statement that has
no FROM clause, just the same way you tried out arithmetic operators in an
earlier lesson. In addition to round, there are two related functions, floor and ceil
for ceiling. Floor rounds down to the nearest integer value and ceil rounds up to
the nearest integer value. So for example, ceil 19.37 returns 20, taking the ceiling
of 19 point anything will return 20, and taking the floor of 19 point anything will
return 19.

So whereas round we'll round up or down depending on whether the number is
closer to the integer above or below, floor will always round to the nearest
integer below, and ceil will always round to the nearest integer above. Another
note about the round function. With positive numbers, if the number you're
rounding is exactly in the middle, equally far from the rounded value above and
the one below, then the round function will round to the one above. For example,
4.5 which is right in the middle between four and five, rounds to five. But with
negative numbers, it will round to the one below. For example, negative 4.5
rounds to negative five. So in the case where a value is equally far from the one
above and the one below, it's always rounded to one that's farther from zero,
positive up, negative down.

Two other common mathematical functions are ABS and SQRT. ABS returns the
absolute value of a number, SQRT returns the square root of a number. Both of
these take just one argument. There is also the pow or power function, which
returns the first argument raised to the power of the second argument. Raising a
number to a power is also called exponentiation. Some SQL dialects and many
programming languages support an exponentiation operator. Often it's the caret
symbol or a double asterisk. But Hive and Impala and many other SQL dialects, do
not have an exponentiation operator. Instead, you use the pow or power function
for exponentiation. With most major SQL engines, including Hive or Impala, you
can use either pow or power, but some SQL engines might only support one or
the other.

Whatever you do, just do not try to use the caret operator for exponentiation in
Hive or Impala. This operator does something completely different in those
engines called the bitwise exclusive OR, that's beyond the scope of this course.
The rand or random function, returns a pseudo-random decimal number between
zero and one. If you're looking for a pseudo-random numbers in a different range,
you can use the arithmetic operators to shift and scale the output, and you can
round it using the round or floor or ceil function. For example, to get a pseudo-
random integer between one and 10, you could write an expression that takes the
ceiling of rand times 10.

You can see from this example, that the arguments to a function can themselves
be expressions not just column references and literals. The rand or random
function does not require any arguments but with many SQL engines, you can
supply a seed value to control whether its output is predictable or not. Different
SQL engines do this in different ways, the details are beyond the scope of this
course. As for the two different names, rand and random, some SQL engines like
Hive and MySQL will only recognize rand. Others like PostgreSQL will only
recognize random and some like Impala will recognize either and that's the case
with many built-in functions. There's a great deal of inconsistency between
different SQL dialects, so you should always test functions to check whether they
work with the particular SQL engine you're using.

There are many more mathematical functions including trigonometric and
logarithmic functions. The details of those are beyond the scope of this course,
but the principles of using them are the same. There are also other types of built-
in functions, like string functions for working with character strings. See the
reading to learn about those. Also, notice that the built-in functions I've talked
about so far, return a column with the same number of rows as the table you're
querying from. In other words, they do not reshape the data. With these
functions, when you use them in a select list and you have a from clause, then the
results that we'll always have the same number of rows as the table in the FROM
clause.

When you use them with literal arguments with no FROM clause, then the result
always has just one row. But you'll see later in the course, that there is another
type of function that does reshape the data.

COMMON STRING FUNCTIONS

There are many string functions available for use in SQL statements. These are
useful for working with text or character string data types. The following list is not
exhaustive, but it does present some of the more common ones you might want
to use.

Unless otherwise noted, the function takes a string argument and returns a string.
Note the bottom square box character (⎵) is sometimes used to represent
whitespace, which could be, for example, a space or a tab character. For some of
these, it would be difficult to see the effect of the function if regular spaces are
used here.

length(str)
This returns an integer value equal to the number of characters in the string
argument str.

Notes:
The name of this function is different, depending on the SQL engine you're using.
For example, some engines use len(str) or char_len(str). (The other functions
described below have the same name across all the major SQL engines.)
For Apache Hive and Apache Impala, use the length function; it works as
described here.

Some SQL engines have functions that are similar to length as described above,
but that return the number of bytes or other units of information that are
required to store a character string. If you're using some other SQL engine besides
Hive or Impala, check the documentation to be sure you understand what the
length function returns and to see what other similar functions are available.
Examples:
length('Common String Functions') = 23
length(' Common String Functions ') = 25
length('') = 0
reverse(str)

This returns the characters within the string argument str, but in the reverse
order. Try it with your favorite palindrome!

Examples:
reverse('Common String Functions') = 'snoitcnuF gnirtS nommoC'
reverse('never odd or even') = 'neve ro ddo reven'
upper(str), lower(str)

These return the string str but with all characters converted either to uppercase
or lowercase. These can be useful for doing case-insensitive string comparisons
(by converting the string to be compared to one case, for example, WHERE
upper(fname) = 'BOB' or WHERE lower(fname) = 'bob').

Examples:
upper('Common String Functions') = 'COMMON STRING FUNCTIONS'
lower('Common String Functions') = 'common string functions'
trim(str), ltrim(str), rtrim(str)

These remove whitespace at the ends of the argument str. You can choose to
remove only leading whitespace (ltrim for left trim), trailing whitespace (rtrim for
right trim), or both (trim). If there is no whitespace on the specified end, the
string is unchanged.

Examples:
trim('⎵Common String Functions⎵ ⎵ ⎵') = 'Common String Functions'
ltrim('⎵Common String Functions⎵ ⎵ ⎵') = 'Common String Functions⎵ ⎵ ⎵'
rtrim('⎵Common String Functions⎵ ⎵ ⎵') = '⎵Common String Functions'
ltrim('Common String Functions⎵ ⎵ ⎵') = 'Common String Functions⎵ ⎵ ⎵'
rtrim('⎵Common String Functions') = '⎵Common String Functions'
lpad(str, n, padstr), rpad(str, n, padstr)

These functions take a string str and an integer n and return a string of length n. If
the original string str is shorter than n characters, the returned string will be str
with characters from padstr added at the left (lpad) or the right (rpad) to make it
length n. (This is called padding the string, and is the opposite of trimming.)
These functions are often used to add zeros to the left or right of numbers that
are represented in strings (this is called zero-padding). If necessary, the pad
string will be repeated. If the length of str is longer, however, the function will

return a truncated version of the string. Truncated characters will be taken from
the right, regardless of which function you specify.

Examples:
lpad('.50', 4, '0') = '0.50'
rpad('0.5', 4, '0') = '0.50'
rpad('Common', 13, ' String') = 'Common String'
rpad('Common', 17, ' String') = 'Common String Str'
lpad('Common', 17, ' String') = ' String StrCommon'
rpad('Common String', 6, ' Function') = 'Common'
lpad('Common String', 6, ' Function') = 'Common'
substring(str, index, max_length)

This function takes a string and two integers, and returns a portion of the original
string. The argument index indicates where to start the substring (indexing the
original string str starting at 1) and max_length is how many characters to include
(though it might be fewer, if the end of the original string is reached). With many
SQL engines, you can also use substr which is an alias for substring.

Examples:
substring('Common String',1,6) = 'Common'
substring('Common String',8,3) = 'Str'
substring('Common String',8,6) = 'String'
substring('Common String',8,10) = 'String'
concat(str1, str2[, str3, …]), concat_ws(sep, str1, str2[, str3, …])

These functions concatenate strings—that is, they put them together into a
single string. The ws in concat_ws stands for “with separator,” the first argument
in that case is placed between each pair of strings. In both cases, the arguments
are concatenated in the order given.
Notes:
Both concat and concat_ws must include at least two strings to concatenate.
They can take more than two, as well.

Some SQL engines have an operator for string concatenation, usually + or ||.
However, Hive and Impala do not have concatenation operators; one of these
functions must be used.

Examples:
concat('Common','String') = 'CommonString'
concat_ws(' ','Common','String') = 'Common String'
concat('Common','String',' Functions') = 'CommonString Functions'
concat_ws(' ','Common','String','Functions') = 'Common String Functions'
concat_ws(', ','Common','String','Functions') = 'Common, String, Functions'

Non-ASCII characters

Note that the string functions in different SQL engines can differ in their handling
of non-ASCII characters. For example: In most SQL engines, upper('é') returns É,
but in others it might return é or throw an error. You should test or consult the
documentation to see how this works.

Other String Functions

Many more string functions are available in most SQL engines. For example, there
are functions for splitting strings, extracting parts of strings, and finding and
replacing specific characters or substrings within strings. If you are interested in
them, check the documentation of the SQL engine you are using (probably under
“String Functions”).

DATA TYPE CONVERSION

In an earlier video, I talked about how arithmetic operators in SQL expect their
operands you have numeric datatypes. So for example, you should not try to
write an expression like 'hello' plus five. Functions in SQL also expect their
arguments to have certain data types. Some arguments of some functions are
expected to be numeric, others are expected to be character strings. In some
cases, you might need to convert one type of data to another, so you can apply an
operator or function.

For example, you might have some numeric values and some string values that
you want to concatenate together into strings, or you might have a string column
whose values actually represent numbers. Converting one data type to another is
called type conversion or casting. Some SQL engines do most type conversions
automatically, this is called implicit casting. Other engines require you to do type

conversion manually, this is called explicit casting. Here are some examples to
demonstrate this.

The games table in the fun database has information about five board games
including, the name of the game in the name column, and the minimum player
age in the min age column. Say you want to concatenate these two columns
together along with some literal string values to create a sentence like, blank
game is more players age blank or older. You can do this with an expression like
this using the concat function. But the concat function expects all its arguments to
have a string data type, and the min age column has an integer data type. Some
SQL engines including HIV will implicitly cast min age as a string column. The
query will run successfully and will return the expected results. But with other
SQL engines including Impala, this query will fail. With engines like that, you need
to modify the SQL statement to explicitly cast min_age as a string column. To do
this, you use the cast function. Cast is a special function that you use in a slightly
different way than the other built-in functions. You enclose the column or literal
value or expression that you want to convert as the argument to the cast
function.

Then before the closing parenthesis, you put a space the keyword "AS" another
space, and the name of the data type you want to convert to. In this example, I
need to cast min_age as a string column. So it's cast min_age AS STRING. With the
statement modified to include this explicit cast, it will now run successfully in
Impala and return the expected result. Here's another example. In the games
table there's a column named year, representing the year that each game was
invented. The values in the year column are all four digit years, but it's actually a
string of column. You can see this by looking at the column information a queue
or by running the utility statement to describe games. It's pretty common to have
numbers in string columns like this.

Columns containing zip codes or numeric postal codes are a classic example of
this. Say you wanted to add some number to each of the years in the year
column. For that, the column would need to be converted to a numeric type.
Since the years are whole numbers, it would be the integer type. If you're using a
SQL engine like Impala that requires explicit casting, then you can do this by
changing the column reference year to cast year AS INT. The explicit casting
syntax described in this video, works in HIV, Impala, and many other SQL engines.

Some other engines support different syntax, for instance, there's a function
named convert in some SQL dialects.

So if this cast value as type syntax doesn't work with a specific engineer using,
search for how to convert datatypes with that engine. It's a good practice to use
explicit type conversion even if the SQL engine you're using can do it implicitly.
Explicit cast can make the queries more portable between different SQL engines,
they can make the queries run more efficiently, and they can help you to avoid
unexpected results. In an earlier video, I talked about how arithmetic operators
in SQL expect their operands you have numeric datatypes. So for example, you
should not try to write an expression like 'hello' plus five. Functions in SQL also
expect their arguments to have certain data types.

Some arguments of some functions are expected to be numeric, others are
expected to be character strings. In some cases, you might need to convert one
type of data to another, so you can apply an operator or function. For example,
you might have some numeric values and some string values that you want to
concatenate together into strings, or you might have a string column whose
values actually represent numbers. Converting one data type to another is called
type conversion or casting. Some SQL engines do most type conversions
automatically, this is called implicit casting. Other engines require you to do type
conversion manually, this is called explicit casting. Here are some examples to
demonstrate this. The games table in the fun database has information about five
board games including, the name of the game in the name column, and the
minimum player age in the min age column. Say you want to concatenate these
two columns together along with some literal string values to create a sentence
like, blank game is more players age blank or older. You can do this with an
expression like this using the concat function. But the concat function expects all
its arguments to have a string data type, and the min age column has an integer
data type.

Some SQL engines including HIV will implicitly cast min age as a string column. The
query will run successfully and will return the expected results. But with other
SQL engines including Impala, this query will fail. With engines like that, you need
to modify the SQL statement to explicitly cast min_age as a string column. To do
this, you use the cast function. Cast is a special function that you use in a slightly
different way than the other built-in functions. You enclose the column or literal

value or expression that you want to convert as the argument to the cast
function. Then before the closing parenthesis, you put a space the keyword "AS"
another space, and the name of the data type you want to convert to. In this
example, I need to cast min_age as a string column. So it's cast min_age AS
STRING. With the statement modified to include this explicit cast, it will now run
successfully in Impala and return the expected result.

Here's another example. In the games table there's a column named year,
representing the year that each game was invented. The values in the year
column are all four digit years, but it's actually a string of column. You can see this
by looking at the column information a queue or by running the utility statement
to describe games. It's pretty common to have numbers in string columns like
this. Columns containing zip codes or numeric postal codes are a classic example
of this. Say you wanted to add some number to each of the years in the year
column. For that, the column would need to be converted to a numeric type.
Since the years are whole numbers, it would be the integer type. If you're using a
SQL engine like Impala that requires explicit casting, then you can do this by
changing the column reference year to cast year AS INT.

The explicit casting syntax described in this video, works in HIV, Impala, and many
other SQL engines. Some other engines support different syntax, for instance,
there's a function named convert in some SQL dialects. So if this cast value as type
syntax doesn't work with a specific engineer using, search for how to convert
datatypes with that engine. It's a good practice to use explicit type conversion
even if the SQL engine you're using can do it implicitly. Explicit cast can make the
queries more portable between different SQL engines, they can make the queries
run more efficiently, and they can help you to avoid unexpected results.

INTRODUCTION TO THE FROM CLAUSE

In the previous two lessons, you learned about the select list, which specifies
what columns should be returned in your query results. The next part of a select
statement that comes right after the select list is the FROM clause. That's the
subject of this lesson. The FROM clause specifies which table the data you're
querying should come from. You'll see later in this course that the FROM clause
can do some other things, like combine two tables together. But for now we'll
consider only the case where the FROM clause refers to a single table. Earlier in
the course, I described how the FROM clause is optional in many sequel dialects.

But you can't do much without it aside from testing out different functions and
operators.

So from here on, I'll mostly treat the FROM clause like a required part of the
select statement. As you already saw in previous lessons, the basic syntax of the
form clause is very simple. It's just from table reference. Table reference is often
simply the name of the table in the current database. So if the current database is
fun, then to query data from the games table, you just use the FROM clause from
games. Recall that a database is just a logical container for a group of tables. It's
sometimes called a schema. And recall that the current database or the active
database is the particular one that you're in, that you're connected to. When you
use just a table name in the from clause, this makes your query dependent on
which database is the current database.

The current database needs to be the one that contains the table you're querying.
So if you're querying a table in one of the non defaults databases, you need to
remember first to connect to that database. Or to switch into that database by
using the active database selector in ue or by running a ue's statement if you’re in
a command line sequel interface. It's easy to forget to do this. You might have
already stumbled on this when attempting to run queries in the VM. I do this all
the time. You get an error like table not found or could not resolve table
reference. Or worse than that, you might forget to switch into the intended
database, and the current database might have a table with the same name as
the one you intended to be in. In that case, you might get a more cryptic error, or
your query might succeed, but you'd be querying a completely different table
than the one you thought you were querying.

This has happened to me and caused me a lot of confusion. Also, if you're sending
a SQL statement to someone else for them to execute, it could be ambiguous
which database you intended for them to use. Fortunately there is a way to avoid
this. Instead of using just the table name in the FROM clause, you can qualify the
table name with the database name. The syntax for this is FROM
databasename.tablename. For example, FROM fun.games. If you use this
qualified form of a table reference, and it doesn't matter what the current
database is, the statement will always query the table in the specified database.
In this course, I will often just use unqualified table names in the FROM clause to
keep things concise. But it's generally a good practice to qualify table names when

you're running SQL statements in the real world. In the previous two lessons, you
learned about the select list, which specifies what columns should be returned in
your query results. The next part of a select statement that comes right after the
select list is the FROM clause. That's the subject of this lesson. The FROM clause
specifies which table the data you're querying should come from.

You'll see later in this course that the FROM clause can do some other things, like
combine two tables together. But for now we'll consider only the case where the
FROM clause refers to a single table. Earlier in the course, I described how the
FROM clause is optional in many sequel dialects. But you can't do much without it
aside from testing out different functions and operators. So from here on, I'll
mostly treat the FROM clause like a required part of the select statement. As you
already saw in previous lessons, the basic syntax of the form clause is very simple.
It's just from table reference. Table reference is often simply the name of the
table in the current database. So if the current database is fun, then to query data
from the games table, you just use the FROM clause from games. Recall that a
database is just a logical container for a group of tables.

 It's sometimes called a schema. And recall that the current database or the active
database is the particular one that you're in, that you're connected to. When you
use just a table name in the from clause, this makes your query dependent on
which database is the current database. The current database needs to be the
one that contains the table you're querying. So if you're querying a table in one of
the non defaults databases, you need to remember first to connect to that
database. Or to switch into that database by using the active database selector in
ue or by running a ue's statement if you’re in a command line sequel interface. It's
easy to forget to do this. You might have already stumbled on this when
attempting to run queries in the VM. I do this all the time. You get an error like
table not found or could not resolve table reference. Or worse than that, you
might forget to switch into the intended database, and the current database
might have a table with the same name as the one you intended to be in. In that
case, you might get a more cryptic error, or your query might succeed, but you'd
be querying a completely different table than the one you thought you were
querying. This has happened to me and caused me a lot of confusion.

Also, if you're sending a SQL statement to someone else for them to execute, it
could be ambiguous which database you intended for them to use. Fortunately

there is a way to avoid this. Instead of using just the table name in the FROM
clause, you can qualify the table name with the database name. The syntax for
this is FROM databasename.tablename. For example, FROM fun.games. If you use
this qualified form of a table reference, and it doesn't matter what the current
database is, the statement will always query the table in the specified database.
In this course, I will often just use unqualified table names in the FROM clause to
keep things concise. But it's generally a good practice to qualify table names when
you're running SQL statements in the real world.

IDENTIFIERS

The database names and table names you use in the FROM clause are types of
identifiers. The column reference is used in the select list are also identifiers. This
is a good time to pause, to clarify some things about identifiers, and some related
topics like keywords and case as in uppercase and lowercase. There are some
rules governing what is a valid identifier in SQL. The rules vary depending on what
SQL engine you're using. But here is a stringent set of rules that should be safe to
follow with any of the major SQL engines including Hive and Impala. Identifiers
can consist of alphabetic characters, that's the letters a to z, digits, zero to nine
and underscores.

Other things like Unicode characters, punctuation, emoji, and so on should not be
used in identifiers. The first character of an identifier should be a letter, a to z.
The letters in identifiers should all be lowercase, and identifiers can be as short as
one character long. The maximum length varies, but it's a good idea to limit them
to 30 characters or fewer. Those rules are pretty stringent and some of them can
be relaxed depending on which SQL engine you're using. There are also some
particular words that you cannot use as an identifier even though they do follow
these rules. These are called Reserved words. An example is the keyword SELECT.
SELECT is a special keyword in SQL that signals the start of a clause. So you should
never try to use it by itself as an identifier. Making it lowercase doesn't change
this, reserved words are reserved regardless of their case. Other familiar
keywords like FROM, AS, DISTINCT, SHOW, and USE, are also reserved words. The
full list depends on what SQL engine you're using. For Hive and Impala, you can
follow the provided links to see the full list of reserved words. The list for Hive
distinguishes reserved keywords from a non reserved keywords.
It's just the reserved ones that you need to avoid. For Impala under the list of
current reserved words, there's also a list of possible future reserved words. You

should also avoid using any of those as identifiers. It is possible with most SQL
engines to break some of the rules for identifiers. But to do this, you need to
enclose the offending identifier in some quote characters. Different SQL engines
use different quote characters around identifiers.

Hive, Impala, Presto, Drill, and MySQL, all use back ticks. But in Post SQL you use
double quotes around identifiers. If you're using another SQL engine, you should
check what characters it uses. Here's a silly example for Hive or Impala. If
someone has made the terrible choice of creating a database named 'use'
containing a table named 'from' with a column named 'select' then to switch into
that database and to query it you would need to enclose all the identifiers in back
ticks as shown here.

USE 'use' then SELECT 'select' FROM 'from'. It's a joke among SQL experts to see
how long you can keep going like this having each identifier be the same as the
keyword before it. But if you ever see identifiers like this in databases in the real-
world, you should probably mistrust the person who created them. Even if
identifier don't break the rules, you can always enclose them in quote characters.
In fact, it's often considered a good practice to quote all your identifiers. This is
especially true if you're writing SQL statements that might be used for many years
or built into an application. But for ad hoc queries that will just execute once, it's
probably not worth the fas. So identifier's in SQL include database names, table
names, and column names. But another type of identifier, is the column aliases
that you can use in SELECT list.

Recall that you can use these aliases to control the names of the columns in the
result set. If you use unquoted aliases, then the rules for what is a valid alias are
essentially the same as the rules for other types of identifiers. Only lowercase
letters, digits, and underscores, starts with the letter no reserved words. But if
you quote an alias, then the rules for what you can use are typically much looser.
When you quote an alias, you can use reserved words, and you can often use
things like spaces and punctuation characters too. When enclosing an alias in
quotes, you should use the same quote characters you use to quote database
names, table names, and column names. Again, for Hive and Impala, it's back
ticks. To continue the silly example from earlier, you could use the quoted
reserved word AS as a column alias as shown here, SELECT 'select' AS 'as' FROM

'from'. This again would be a terrible choice. When you're choosing aliases it's a
good practice to follow the stringent rules I described earlier.

With Hive and Impala and many other SQL engines, identifiers are case
insensitive. That means, that the statement SELECT NAME FROM FUN.GAMES; in
all capital letters will work exactly the same as SELECT name FROM fun. Games.
You could use any combination of upper and lowercase letters in the database
name, table name, and column name, and it would still work. This is true whether
or not you quote your identifiers, but I strongly encourage you to only use
lowercase letters in identifiers for consistency. Some databases are fussier about
the case of identifiers. For example, Post SQL is sensitive to the case of identifiers
but only when they're enclosed in double quotes. If you're using some other SQL
engine, search for the details regarding case sensitivity of identifiers. Also, please
see the reading for some more information about case in SQL. If you need help
understanding the meanings of some of the terms I used in this video like
identifier and keyword, see the glossary in Course Resources which includes
definitions for these and many other terms.

FORMATTING SELECT STATEMENTS

In the example SELECT statements presented in this course, you might have
noticed that sometimes the SELECT clause and the FROM clause are both on the
same line, and other times the FROM clause is on a separate line below the
SELECT clause. Either way is fine because in SQL extra white-space is generally
ignored. You can include as many new lines, spaces, and tab characters as you like
between the keywords and names and literals and operators that make up the
statement, and SQL engines will ignore at all. The only time when extra white-
space is not ignored is when it's used inside key words or names or literals.

For example, you cannot just put a whitespace character in the middle of a
keyword like SELECT or in the middle of a function name or table name or
number. If you add a whitespace character inside a quoted literal string, then it
will represent that literal whitespace character within the string. Of course, there
are many places where you need to use at least one whitespace character like to
separate the keywords SELECT from the list that comes after it and to separate
the keyword FROM and the table reference that comes after it. In these places,
any extra white-space you use is ignored. Because extra white-space has no

meaning to a SQL engine, you can use it to format SQL statements to make them
easier to read.

With very short statements, this is usually not necessary, you can just put the
whole statement on one line. But with longer statements, it really helps with
readability, if you use some extra white-space. For longer statements, a
convention is to put each clause on a new line and indent all the clauses after the
first one with a tab or several spaces. Also, if there's an individual clause that's too
long to fit on a single line, then you can split it up using new lines and use double
indentation at the beginning of the lines that the cause continues onto. Here's an
example. Notice that this statement has a very long SELECT list and it's been split
up into three lines by adding new lines after some of the commas. The FROM
clause is on its own line too and is indented with two spaces.

The lines that the SELECT list continues onto are indented with four spaces. Using
four spaces instead of two to indent those lines, makes it easier to see when the
SELECT clause ends and the FROM clause begins. That's the convention I'll use for
formatting longer SQL statements in this course, except in cases where there's
not enough room and I need to format it differently to fit on the screen. I
encourage you to also follow this convention or perhaps some other convention
of your choice that keeps your SELECT statements looking tidy and easily
readable. Again, using new lines or extra spaces is never necessary, but it's helpful
for readability and it will be even more helpful as you use additional clauses and
write longer and more complex SQL statements in the later parts of this course.
Another thing you should keep in mind as you learn about the other clauses is
that the order of the clauses in the SELECT statement is important.

In general, you cannot go moving around the clauses. They need to be in the
correct order or the SQL statement will be invalid. There are some exceptions to
this. For example, HIVE will actually allow you to put the FROM clause before the
SELECT clause, which is fine if you like to write SQL like the way Yoda speaks. But
you should not generally do this. It will work with HIVE, but not with many other
SQL engines, and it might not even work with HIVE depending on what client
application you're using. In the example SELECT statements presented in this
course, you might have noticed that sometimes the SELECT clause and the FROM
clause are both on the same line, and other times the FROM clause is on a
separate line below the SELECT clause. Either way is fine because in SQL extra

white-space is generally ignored. You can include as many new lines, spaces, and
tab characters as you like between the keywords and names and literals and
operators that make up the statement, and SQL engines will ignore at all. The only
time when extra white-space is not ignored is when it's used inside key words or
names or literals.

For example, you cannot just put a whitespace character in the middle of a
keyword like SELECT or in the middle of a function name or table name or
number. If you add a whitespace character inside a quoted literal string, then it
will represent that literal whitespace character within the string. Of course, there
are many places where you need to use at least one whitespace character like to
separate the keywords SELECT from the list that comes after it and to separate
the keyword FROM and the table reference that comes after it. In these places,
any extra white-space you use is ignored. Because extra white-space has no
meaning to a SQL engine, you can use it to format SQL statements to make them
easier to read. With very short statements, this is usually not necessary, you can
just put the whole statement on one line. But with longer statements, it really
helps with readability, if you use some extra white-space. For longer statements,
a convention is to put each clause on a new line and indent all the clauses after
the first one with a tab or several spaces.

Also, if there's an individual clause that's too long to fit on a single line, then you
can split it up using new lines and use double indentation at the beginning of the
lines that the cause continues onto. Here's an example. Notice that this statement
has a very long SELECT list and it's been split up into three lines by adding new
lines after some of the commas. The FROM clause is on its own line too and is
indented with two spaces. The lines that the SELECT list continues onto are
indented with four spaces. Using four spaces instead of two to indent those lines,
makes it easier to see when the SELECT clause ends and the FROM clause begins.
That's the convention I'll use for formatting longer SQL statements in this course,
except in cases where there's not enough room and I need to format it differently
to fit on the screen.

I encourage you to also follow this convention or perhaps some other convention
of your choice that keeps your SELECT statements looking tidy and easily
readable. Again, using new lines or extra spaces is never necessary, but it's helpful
for readability and it will be even more helpful as you use additional clauses and

write longer and more complex SQL statements in the later parts of this course.
Another thing you should keep in mind as you learn about the other clauses is
that the order of the clauses in the SELECT statement is important. In general, you
cannot go moving around the clauses. They need to be in the correct order or the
SQL statement will be invalid. There are some exceptions to this. For example,
HIVE will actually allow you to put the FROM clause before the SELECT clause,
which is fine if you like to write SQL like the way Yoda speaks. But you should not
generally do this. It will work with HIVE, but not with many other SQL engines,
and it might not even work with HIVE depending on what client application you're
using.

CASE (IN)SENSITIVITY IN SQL

As you've seen in the course videos, whether the case of words in SQL matters
varies. In general, case sensitive means that case matters—a letter or group of
letters that are uppercase (capital, for example 'A' or 'FROM') is considered
different from the same letter or group of letters that are lowercase (for
example, 'a' or 'from'). Case insensitive means these things are the same—it
doesn't matter if you write something with uppercase letters, lowercase letters,
or even a mix of cases. For case insensitive matters, 'FROM' is the same as 'from'.

In SQL, there are many different things that could be case sensitive or not:
keywords, function names, column and table references, strings (when
comparing). Unfortunately, it's difficult to be definitive, because different SQL
engines have different behaviors. For example:

 In PostgreSQL, Apache Hive, and Apache Impala, table and column names
are always lowercase. Even when you create a table, if you use uppercase,
any results showing the table or column names will show them lowercase.
However, table and column references are essentially case insensitive,
because you can still use uppercase or lowercase in your queries. The
engine will automatically convert them to lowercase. Results will show
them using lowercase letters.

 In MySQL, table and column names will retain how they are defined on
creation (or for column names, however they might be altered later). If you
define them with uppercase, they will be stored as uppercase; if you define
them with lowercase, they will be stored as lowercase. However, the table
names are case sensitive: You must match the case to get a result. If the

table is named TABLE_NAME, then FROM table_name will not match that
table. On the other hand, column names are case insensitive. Any
references using the correct letters will match regardless of case. The
results will use the case you use for the query, so SELECT NAME will have
NAME in the result header, but SELECT name will have name in the result
header. Otherwise the results will be the same.

Even string comparisons can work differently:

 In PostgreSQL, Hive, and Impala, string comparisons are case sensitive. For
example, 'this' = 'This' returns false.

 MySQL string comparisons are not case sensitive. For example, 'this' =
'This' returns 1(true), as does 'this'='THIS'. (But 'this' = 'that' returns 0, or
false.)

This course emphasizes Hive and Impala. In Hive and Impala, all keywords,
function names, and identifiers are case insensitive. Only string comparisons are
case sensitive. However, we will use the following conventions. These are
merely conventions; although they are widely used, they are not essential:

 Keywords (like SELECT and FROM) are in uppercase.

 Most other things are all lowercase, including identifiers and most function
names.

Making keywords the only things uppercase makes it much easier to quickly
identify the keywords.

Other tools that access Hive or Impala, such as business intelligence applications,
might impose their own case conventions and might have their own rules for
identifier names. So if you’re using some tool like that, be sure to also consider its
conventions and rules, not only the conventions and rules imposed by Hive or
Impala.

WEEK 3
Learning Objectives

 Construct query statements that filter results to provide more efficient
analysis

 Use comparison operators, logical operators, and conditional functions in
expressions

 Create queries with desired handling of NULL values
 (Honors) Format and save query results

INTRODUCTION

Welcome to Week 3 of Analyzing Big Data with SQL. In the previous week's
lessons, you learned about two of the clauses that make up a select state. The
SELECT clause, which specifies what column should be returned in your result set,
and the FROM clause, which specifies where the data you're querying should
come from. The SELECT clause is a required part of every SELECT statement, and
the FROM clause is required to query actual rows of data from tables. In this
week of the course and throughout the remaining weeks, you'll learn about
several more clauses that are not required but that enable you to answer
different types of questions.

This week is all about the WHERE clause, which filters the rows of data based on
some specified conditions. Even though we’re moving on to a new clause this
week, you’ll see that we will revisit many of the topics covered in the previous
week, including data types, expressions, operators, and functions. These are just
important in the WHERE clause as they are in the SELECT clause. And in this week
of the course, I'll extend to some of those topics. You'll learn about Boolean data
types, how to write Boolean expressions, how to use logical operators and
conditional function. Understanding each of these topics will help you specify the
conditions to control which rows of data are returned in a result set.

About the Datasets
In this course so far I've asked you to query only the smaller tables on the VM,
which are in the defaults database and the toy, and fun databases. That's because
I had not yet introduced the clauses that you need to work with very large tables.

But beginning in this week of the course you'll start to learn about those clauses.
So I'll start asking you to query the larger tables on the VM. First, I'll ask you to
query the table in the wax database, which is just a little bit bigger than the tables
in the fly database, some of which are much bigger.

Even though you'll be learning how to work with larger tables, I'll still be using the
tiny little tables to teach and demonstrate. With these tiny tables you can see the
table, see the select statement, see the result all at a glance. And this is great for
understanding what different kinds of select statements do. So we're not done
with these tiny tables yet, but we'll add the larger tables to the mix. In this video
I'll explain what's in these databases named wax and fly. The wax database has
just one table named, crayons. This table describes 120 different crayon colors.
The columns give the name of the color, its hexadecimal code, and its red, green
and blue values, which each range between zero and 255. The hex code and the
red, green and blue values assume we're representing the colors using the RGB
color model. There's also a column named pack, which gives the smallest pack
that the crayon comes in. The basic colors like blue and yellow come in all the
packs even the smallest, but some of the more exotic colors only come in the
bigger packs. So this pack column gives the number of crayons that's in the
smallest pack that the color comes in. The fly database has four tables named,
flights, airlines, planes, and airports. The flights table is the biggest of these. It has
more than 60 million rows representing passenger flights by major airlines in the
United State for a full decade from 2008 through 2017.

This table is big, but it's not really so big by today's standards. There are real-
world tables stored on clusters and in cloud storage today that are many
thousands of times bigger. But the data in the flights table is big enough that if
you tried to use traditional tools to work with it, you would have trouble. It would
be impossible at worst and slow, or inefficient at best. It's with data this large that
the value of distributed SQL engines like Hive and Impala start to become evident.
The other three tables in the fly database, airlines, planes and airports are all
related to the flight's table. They have more information about the airlines that
operated these flights, the planes that flew them, and the airports they departed
from and arrived at.

The data in this fly database is real-world data from the US Department of
Transportation. So it might contain records representing airports you've been to

or flights that you flew on. When you're analyzing the data in a table as large as
some of those in the fly data base. You should almost never run a select
statement that returns all the rows in the table. But if you use the WHERE clause
to filter rows, or if you use some of the other clauses you will learn about later in
the course. Then you can query a table this large and get a results that it's small
enough to work with or to interpret. So as you learn how to use the WHERE
clause and these other clauses, more of the questions and quizzes will ask you to
query these bigger tables in the fly database. And you'll see that the remainder of
the course will start to have a bit of an aviation theme.

This will culminate with the final assignment in which you will write and execute
some more complex queries on these tables in the fly database. To analyze the
data and answer some important business questions. It will help for you to get
familiar with the tables in the fly database. Please see the reading for more
information about these tables and about the tables in the other databases, too.
Including how they're structured and where the data comes from. The reading
include descriptions of every column, and some of them do require further
explanation. So see the descriptions there to understand what they all represent.

Different SQL engines accept different character sets for string data. Two
common sets are Unicode and ASCII, but there are other character sets as well.

CHARACTER SETS

The acronym ASCII (pronounced “AS-key”) stands for “American Standard Code
for Information Interchange” and dates back to the 1960s. It was the first
character set widely used on computers and consists of 128 characters, including
the English alphabet (both uppercase and lowercase letters), numbers, and
punctuation marks. Each character is assigned a number, from 0 to 127.

The extended ASCII set adds another 127 characters, for a total of 256. It includes
diacritic characters (such as é, ç, or ö) and some other common symbols, such as
the degree symbol (°).

Unicode is a newer industry standard with well over 130,000 characters. It is a
superset of the ASCII set; that is, Unicode characters 0–127 are the same as the
ASCII characters with the same numbers. Unicode includes not only diacritic
characters (such as é, ç, or ö), it also includes completely different character sets,

https://www.w3schools.com/charsets/ref_html_ascii.asp

such as Cyrillic and Brahmic language characters, and symbols such as
mathematics symbols, advanced punctuation, and dingbats.

Here are some examples of Unicode characters in a literal string, using different
languages:

'Bishop à G5' (French)

'Бишоп до Г5' (Macedonian)

'ប ៊ីស្សពដ ើម្ប ីG5' (Khmer)

'♗to G5' (English, using a dingbat for bishop)

SUPPORT IN SQL ENGINES

Most major SQL engines allow the use of Unicode characters in character strings.
These can be values within a string column or field, or literal strings. However,
using Unicode characters in identifiers (such as column names or aliases)
is inadvisable, even if allowed.

With some SQL engines, you might need to modify a setting to enable handling of
Unicode characters, but even with handling enabled, there can be limitations or
special considerations to using these in your data. For example, some systems
may require including the letter N before a literal value (for example, N'Бишоп
до Г5'), to alert the system that the following string might use Unicode characters
(or even characters not supported by the Unicode set). Other systems require
that the string be enclosed in double quotes (not single quotes). For data values,
some (such as Microsoft SQL Server*) require using separate data types that allow
Unicode characters.

The SQL engines available on the VM all have limited support for Unicode
characters within literal strings and the standard string variable types. For
example, string functions might work with non-ASCII Unicode characters, but they
might not. The function lower('ÉTIENNE') will produce 'étienne' with Apache Hive

and PostgreSQL, but 'Étienne' with Apache Impala and '��tienne' with MySQL
(using the command line—see below).

Impala and MySQL treat each Unicode character as a byte array, so one character
will appear to be more than one. They incorrectly identify length('ÉTIENNE') as 8

(treating É as two characters). Also, substr('ÉTIENNE',1,1) will instead return �,
but substr('ÉTIENNE',1,2) will return 'É'. Hive and PostgreSQL will handle both of
these instances correctly.

The MySQL editor in Hue on the VM has some difficulty with Unicode characters,
particularly when they appear in a column heading above a result set. You may,
however, use MySQL on the command line on the VM if you are familiar with it
(use mydb as the database, with user training and password training).

If there is a possibility that your data will include Unicode characters, check what
your system’s support for Unicode is. Test your SQL statements with values that
include Unicode characters so that you are aware of any issues that might arise.

* Collation and Unicode Support. Retrieved from https://docs.microsoft.com/en-
us/sql/relational-databases/collations/collation-and-unicode-support?view=sql-
server-2017on August 17, 2018.

INTRODUCTION TO THE WHERE CLAUSE

 The next clause in a SQL statement after the Select clause and the From clause is
the Where clause. The Where clause filters the rows of data based on one or
more conditions. Typically these conditions are tests of the values in specified
columns for all the rows of the data. In other words, the Where clause takes all
the data in the table, tests which rows meet some criteria, and returns only those
rows. The Where clause has no effect on which columns are returned only on
which rows are returned. The Where clause is optional. If you run a Select
statement that has a Select clause and a From clause but no Where clause, then
you get a result set that has as many rows as the table specified in the From
clause.

The one exception to this that you've learned so far is if you use the distinct
keyword, which removes the duplicate rows from the results set. Recall the
earlier videos where I talked about data retrieval versus data analysis. The Where
clause is where you really start to do data analysis, because you can use it to
answer questions in the form in which rows are these conditions true. These
conditions are the question you're asking about the data, and the result you get

back contains the answer to that question ready for you to interpret. For
example, looking at the games table in the fund database, you could ask, which
games are priced at below $10? To answer that question, you would filter the
rows to return only the games where list_price is less than 10, and the result you
would get is Clue and Candy Land. That's a very simple example of the kind of
logic you'll learn how to express in the Where clause.

So the WHERE Clause takes all the rows in a table, checks each row against some
conditions and returns only the rows in which the conditions are true. The way
that you specify these conditions in the WHERE clause is with an expression.
Recall what you learned about expressions in the previous week of the course.
When you learned how to use them in the SELECT list. An expression is a
combination of literal values, column references, operators and functions. When
a SQL engine evaluates an expression, it produces a column of values.

When you use an expression in the SELECT list, that column of values is returned
as a column in the results set. You can use one or more expressions in the SELECT
list separated by commas. These expressions can produce columns with different
data types including numeric columns and character string columns. When you
use an expression in the WHERE clause it is not returned in the results set, instead
it is used to determine which rows are returned. You can use only one expression
in the WHERE clause not to multiple expressions separated by commas.

The expression must evaluate to a single column of Boolean values also called
logical values. These are true and false values. Only the rows in which the
expression evaluates to true, are returned in the results set. I will demonstrate
this with some examples. First recall the question from the previous video. Which

games are priced at under $10? Looking at the columns in the games table you
can see that the column with price information is named list_price. Once you
know that, it's straightforward to express this question in the form of an
expression that returns true or false for each row in the games table. The
expression is simply list_price less than 10. To make this Boolean expression into a
WHERE clause you simply put the keyword WHERE before it, WHERE list_price
less than 10.

But you can't execute a WHERE clause by itself. It needs to be part of a complete
SELECT statement. So, first I'll add the FROM clause, to specify which table the
data should come from, FROM fun.games. Then I'll add the SELECT clause to
specify what columns should be returned in the results set. The only column I
really want to return is the name column. So I'll make it SELECT name, and now
have a complete SELECT statement including a WHERE clause. When I execute this
statement, the results set contains one column, name and two rows with the
values Clue and Candy Land. So those are the only games in this table priced
below $10. It would be nice to see what the list prices are for these two games.
We know they're both less than $10, but we don't know exactly what the prices
are. So I'll add the list price column to the SELECT list after the name column.
That's also returned in the SELECT list. The choice of which columns you include in
the SELECT list is totally separate from the choice of which columns you evaluate
in the WHERE clause. You can select star or select whatever you want
independent of what columns are in the expression in the WHERE clause. Here's
another example, which games were invented by Elizabeth Magie? The
expression to test this is, inventor equals 'Elizabeth Magie'.

In a WHERE clause inside a complete SELECT statement its, SELECT name FROM
fun.games WHERE inventor equals 'Elizabeth Magie'. The result shows that it's the
one game monopoly. A third example, which games are suitable for a seven-year-
old? The games table has a column named min_age which represents the
minimum age for a player. So for a game to be suitable for a player age seven the
value in this min age column must be less than or equal to seven. Making this into
a complete SELECT statement, its SELECT name, min_age FROM Fun.games
WHERE min_age less than or equal to seven. The result shows it's just one game
Candy land, that's suitable for players as young as three. You'll learn more about
these comparison operators like less than and less than or equal to you in another
video later in this week of the course.

The questions I posed at the start of these examples, were all very simple. It
didn't take a lot of hard thinking to figure out how to write an expression in the
WHERE clause to answer each of these questions. But in the real world things are
rarely so simple. Often, the hardest part of writing a WHERE clause is translating
human language with its frequent ambiguities and possibility for
misunderstanding into an unambiguous Boolean expression that answers the
question as intended. As a data analyst the questions you're asked to translate
into SELECT statements, will often lack sufficient detail and clarity.

USING EXPRESSIONS IN THE WHERE CLAUSE

You'll often need to ask for clarification or make some reasonable assumptions
and then clearly communicate those assumptions when you share your result.
You'll also need to be sure you're using the right columns in the right tables to
answer the question. Here are some ways that my attempts to answer the
questions in the examples I just showed could have been confounded. The first
question was, which games are priced at under $10? I answered this question by
querying the Fun.games table and filtering on the column list_price. But what if
the person who asked this question intended for me to answer it using a different
table?

There's a table named inventory in the fund database that has information about
the board games that are in stock at a couple of shops. There's a column named
price in this table, representing the price the game is being sold for at each shop.
Maybe the person who asked me the question intended for me to query this
inventory table. This would give a different result set. Only the game Clue, in the
shop named Dicey, is for sale at a price less than $10. The second question was,
which games were invented by Elizabeth Magie? I was lucky with this question
because the inventor's name in the question, perfectly matched the value in the
inventor column in the games table.

But all kinds of things could have gone wrong. Elizabeth Magie also went by Lizzy
Maggie and Elizabeth J. Maggie, and later she got married and changed her name
to Elizabeth J. Philips. If I heard the question verbally maybe I would have thought
the last name was spelled MCGEE. Circumstances like this could have prevented
me for writing a select statement that returned to the intended result. Obviously,
since I'm working with a table that has only five rows, errors like this seem easy to

avoid. I can just glance at the table and figure it out. But that would not be the
case if the table had millions of rows. The third question was, which games are
suitable for a seven year old? To answer this question, I evaluated the min age
column in the games table.

What if there was also a max age column and I had neglected to notice it? Candy
Land is a pretty juvenile game. Some retailers describe it as a game for players age
three to six. If there were a max age column with the value six for Candy Land,
then the SELECT statement I wrote, would incorrectly identify Candy Land as
suitable for a seven-year-old. To get the correct answer in that case, I would need
to modify the expression in the WHERE clause, to evaluate both the min age and
max age columns. Then the result would indicate that none of these games are
suitable for a seven-year-old. You'll learn about logical operators like the 'and' in
this example in another video later this week.

These allows you to combine multiple conditions into a single Boolean expression.
As if these examples weren't enough, you'll also need to consider the possibility
of missing values in the data and all the misinterpretations that can arise from
that. You'll learn more about that in one of the lessons this week. So in this week
of the course, as you learn how to write expressions to specify different kinds of
filtering conditions in the WHERE clause, don't forget to always carefully interpret
the questions you're asked, and watch out for possible ambiguities and
misinterpretations.

COMPARISON OPERATORS

In the simple examples in the previous video, I showed how you can use
operators, like less than and equals in expressions in the WHERE Clause to
compare column values with literal values. Recall the examples, like WHERE
list_price less than 10, and WHERE inventor equals Elizabeth Maggie. In this video,
I'll show the common comparison operators that you can use in Boolean
expressions in SQL and I'll describe how you can use them. All of these are binary
operators, meaning that there's an operand on both sides of the operator, and all
of these work across all the major SQL engines. The equals sign in a SQL
expression tests for equality of the operands.

You can use this operator with any data types, including numeric and character
string if the operands on the left side and the right side, call them X and Y. If they

are exactly equal, then the expression X equals Y evaluates to true. If you have
any experience with programming languages, then you're probably more familiar
with the use of double equals, two equals signs for equality comparison. That's
because a single equal sign is used for variable assignment in many programming
languages, but in a SQL SELECT Statement, there's no variable assignment, so you
just use a single equal sign for equality comparison. The not-equals operator test
for inequality of the operands. This is basically the opposite of the equal sign.
When X equals Y is true, then X not-equals Y is false and vice versa. But you'll see
in an upcoming video, that in the case of missing values, it is possible to have two
operands that are neither equal nor unequal. There are two forms of the not-
equals operator in SQL, exclamation mark equals, and less than, greater than.
Both of these work with most major SQL engines.

The first form, exclamation mark equals is more widely used today and it's what
I'll use in this course. Less than and greater than are two operators that should be
familiar to almost everyone. These are typically used with numeric operands. The
same is true of the less than or equal to and greater than or equal to operators.
Each of these operators is two characters with the equals sign right after the less
than or greater than symbol. At this stage of the course, you should not try to use
these last four operators with non-numeric operands, like character strings.
You'll learn more in a later week of the course about how SQL engines compare
the ordinal values of different strings but for now, just avoid using these
operators with non-numeric operands. When you're using these comparison
operators in an expression in SQL, the operands on the left and right sides can be
column references or literal values. For example, you can compare the values in
one column to the values in the same rows in another column or you can
compare the values in a column to a literal value. Here are some simple examples
based on the data in the crayons table in the wax database. Recall that there are
columns in that table named, red, green, and blue with integer values between
zero and 255, these represent colors with the RGB color model.

You could query this table to return only the colors that have a green value larger
than the red value. To do this, you would use the expression green greater than
read, this compares each value in the green column to the value in the same row
in the red column or you could answer the question which colors have a blue
value of 50 or lower. To do this, you would use the expression blue less than or
equal to 50, this compares each value in the blue column to the literal number 50.

Try writing some SELECT Statements to query the crayons table, using expressions
like these in the WHERE Clause. The operands on the left and right sides of
comparison operators can also be expressions.

The SQL engine evaluates the expressions on both sides of the comparison
operator, then evaluates the whole Boolean expression to compare the left and
right sides for each row. I'll demonstrate this with an example. In the RGB color
model, very high values of red, green, and blue, yield colors that are very light,
close to white. So we could find the lightest crayon colors by looking for the ones
where the sum of the red, green, and blue values is large, say over 650. To do this,
you would use the expression, red plus green plus blue greater than 650. Now, try
using some expressions like this in the WHERE Clause, using arithmetic operators
or built-in functions to create an expression on one or both sides of the
comparison operator.

The example I just showed used an arithmetic expression, red plus green plus blue
on one side of the comparison operator, and a literal number, 650 on the other
side. When you use this expression in the WHERE Clause of a SELECT Statement,
then the rows in the results set all have red plus green plus blue greater than 650,
but the results set does not include a column giving these values of red plus green
plus blue, the SQL engine calculate these sums and uses them to filter the data,
but it does not return these sums in the results set. But it might be good to
include them in the results set, maybe to see how close to 650 each one is. So you
might try something like this, compute the sum of these colors in an expression in
the select list, give this result column an alias, rgb_sum, and then use that alias in
the expression in the WHERE Clause, rgb_sum greater than 650.

Unfortunately, this does not work. The reason is that SQL engines process the
WHERE Clause before they compute the expressions in the select list. In other
words, they filter the rows of the table before they build the columns for the
result set. So aliases defined in the select list are not available for you to use in
the WHERE Clause. There are some exceptions to this, but most SQL engines have
this limitation. You can work around this by entering the expression again in the
select list. If this seems a bit kludgy, needing to use the same expression twice, I
agree, it is. In a later course in this specialization, you'll learn about other possible
workarounds. In this video, I've focused on using these Boolean expressions in the

WHERE Clause, but you can use them in the select list too, then you get a Boolean
column in your result set.
For example, here I moved the whole Boolean expression, red plus green plus
blue greater than 650, out of the WHERE Clause and into the select list and I gave
it the column alias, light because these colors with high RGB values are light
colors. Then the results that includes a column named light, containing true or
false values. You can see Almond has a light color, Antique Brass is not, and so on.
The results set has not been filtered by this expression, instead, the expression
just returns a column of Boolean values in the results set. With many SQL engines,
Boolean is a datatype, just like the numeric and character string data types you
learned about earlier. Instead of being numbers or strings, a Boolean column
contains true and false values. Hive, Impala, Presto, Drill, and PostgreSQL, all have
a Boolean data type. But many SQL engines actually do not have a Boolean data
type, instead, they use integers to represent true and false values, zero is false
and one is true, MySQL works this way. So if you ran a query like this with MySQL,
you would get a column of ones and zeros in the results set.

DATA TYPES AND PRECISION

 When you're using comparison operators in a boolean expression, it's important
to pay attention to the data types of the operands. The left and right operands
don't need to have exactly the same data type, but both operands should have
the same high level category of data type, like both numeric or both character
string. For example, it's okay to have an integer on one side, and a decimal
number on the other, like this, 1=1.0. Integer and decimal are compatible data
types and this expression will return true. When the operators do not have the
same high-level data type, different SQL engines do different things. For example,
the digit 1, in a coded string, equals the integer value 1.

Comparing these two values requires converting them to a common data type to
enable an apples to apples comparison. Some SQL engines, like Impala, will not
automatically perform this type conversion. So a query with an expression like
this in it will fail. To get the query to succeed you would need to explicitly cast the
left operand to a numeric type, or the right operand to a character string type, as
described in an earlier video. But other sequel engines including Hive will perform
and implicit cast and the query with an expression like this will run successfully.
But it's hard to understand exactly what is happening in implicit casts like this. Is

the left operand being converted to a number for comparison purposes or the
right operand to a string?
Unexpected things can happen with automatic type conversion. And it's better
not to leave anything to chance. So you should explicitly cast operands to the
same high level category of data type before using comparison operators to
compare them. Refer back to the video about data type conversion in week two
of this course, if you need a refresher on how to do this. Also, when you're
working with decimal data types in SQL, and in particular with floating point
numbers, some strange things can happen when you use comparison operators.
For example, one-third represented as a decimal number is 0.3333, infinitely
repeating. But of course, you can't write infinitely many digits after the decimal,
you need to stop somewhere. Nor can a computer store infinitely many digits
after the decimal.

So how many digits do you need? How many threes do I need for a SQL engine to
say that 0.3333 and so on is equal to one third. With Impala the expression one
third equals 0.3333 with four threes after the decimal, that evaluates to false. But
if you put 20 threes after the decimal then it evaluates to true. Somewhere on the
far right side of a number like 0.3333 with arbitrarily many threes. Somewhere in
the smallest decimal places, SQL engines will start to ignore differences when
comparing numbers. This is necessary because values like one third can never be
represented with perfect precision regardless of how many decimal places you
have.

But it's hard to know exactly how far into the less significant digits where a SQL
engine will start to ignore the differences. One solution is to use rounding to
make comparisons like this less ambiguous. One-third rounded to the fourth
decimal place is equal to 0.3333, with four 3s after the decimal. An upcoming
video shows another possible work around for this. And the next course in this
specialization goes into more detail about the unexpected behaviors that can
happen with floating point values. But for now just keep in mind that weird stuff
can happen in the least significant digits. And use rounding to avoid ambiguous
comparisons.

WORKING WITH LITERAL STRINGS

In the video lecture, “Comparison Operators,” the instructor presented how to

use comparison operators in SQL statements. Most of these comparison

operators are probably already familiar to you. You probably already have an

intuitive understanding of how they work with numeric operands.

You can also use them with character string operands. Just as numbers have

order to them, characters have order to them, and comparison operators use this

order to determine the truth of the comparison. Alphabetical order is a simple

example, so for example, when using the English language, b < t because b comes

before t in the English alphabet. It can get more complicated when you begin to

consider things like case sensitivity, punctuation, Unicode characters, and mixing

sets of alphabets. You'll read more about these complications in Week 3. For now,

you can just think about the alphabetical order and focus on equal strings.

Within a SQL statement, you are not likely to compare two literal strings (also

called string constants)—strings with a stated value, such as "this" or 'that'.

Instead, you are likely to compare a column with the STRING data type to a literal

string (or occasionally to another string column). For example, this statement will

filter the inventory table to provide only rows for the Dicey shop:

 SELECT * FROM inventory

 WHERE shop = 'Dicey'

Even this can have some complications. For example, consider the same

statement with just the name of the shop changed to the other shop in the table,

Board 'Em:

 SELECT * FROM inventory

 WHERE shop = 'Board 'Em'

Do you see the issue? Because the name includes an apostrophe—which is the

same character as the single quote being used to define the literal string—the

string would be interpreted as 'Board ' and the unexpected extra text Em' would

most likely throw an error.

Many SQL engines allow you to use either single or double quotes around literal

strings, so one way to fix this would be to use double quotes:

 SELECT * FROM inventory

 WHERE shop = "Board 'Em"

Some versions of Impala, including the one installed on the course VM, require

that you escape single quotes even within double-quoted literal strings. The

backslash alerts the query engine that the next character has a different meaning

than usual—in this case, that it should be taken literally and not as the end of the

quote.

 SELECT * FROM inventory

 WHERE shop = "Board \'Em"

or

 SELECT * FROM inventory

 WHERE shop = 'Board \'Em'

Some SQL engines do not allow using double quotes for quoted strings.

PostgreSQL, for example, requires single quotes around literal strings. Double

quotes are reserved for a different purpose. In that case, you would need to

escape the interior single quote. This is done by using the backslash as with

Impala, or by putting twosingle quotes (which is not the same as a double quote)

in its place:

 SELECT * FROM inventory

 WHERE shop = 'Board ''Em'

This method will also work with most SQL engines that do allow both single and

double quotes. Other methods may also work; see the section at the end of this

reading.

For the greatest compatibility across SQL engines, we recommend escaping

interior single quotes with the backslash (\').

One final warning when working with literal strings: Be careful, especially when

copying and pasting quoted strings from emails and documents, that the pair of

single or double quotes that enclose the string are straight quotes and

not curly or smart quotes. Compare the quotes in the following statement to the

ones in the statements above:

 SELECT * FROM inventory

 WHERE shop = “Board ’Em”

Can you tell how the double quotes are both slanted, and in different directions?

SQL engines will not recognize this character as the straight double quotes (") and

so it will not work.

Notice that the single quote in the statement above is also different. In this case,

because it's an interior quote and not being used to define the start and end of a

string, this will not throw any errors. But note, it would not match the actual

value Board 'Em in the data, because the value in the data uses a straight quote

and not a curly quote. For example, this query will succeed in most SQL engines

but will return 0 rows:

 SELECT * FROM inventory

 WHERE shop = "Board ’Em"

But if curly single quotes were used to define the string, as in the following, it

would not be accepted:

 SELECT * FROM inventory

 WHERE shop = ‘Dicey’

In addition to the comparison operators mentioned in the video lecture, another

comparison operator that can be used with string operands is the LIKE operator.

This operator can be used to match partial strings. For example, this statement

will filter the inventory table to provide only rows for the Dicey shop, because the

string Dicey contains the substring ice.

 SELECT * FROM inventory

 WHERE shop LIKE '%ice%'

The percent sign (%) is a wildcard that matches zero or more characters. You can

also use an underscore (_) to match any single character. In Hive and Impala,

matches with the LIKE operator are case-sensitive, but case sensitivity varies

depending on the SQL engine.

LOGICAL OPERATORS

The WHERE clause if you use it, must contain only one boolean expression, as I
described in an earlier video. You cannot have multiple expressions separated by
commas in the WHERE clause. However, you can use what are called logical
operators to combine multiple smaller boolean expressions or sub-expressions
into a single boolean expression. I'll demonstrate this with some examples using
the games table in the fund database. What if you're looking to buy a game that
six people can play and you have $10 to spend on it. In the WHERE clause, you
would need to combine these two conditions. Max_players greater than or equal
to 6 and list_price less than or equal to 10. You would combine them with an AND
operator in this case because you want to both of these conditions to be true.
Here's another example.

What if you're looking for a game to play with no specific number of players in
mind but you only have $10 to spend on it. Also, you already own monopoly. So
Monopoly is also an option regardless of the price. In the WHERE clause, you
would combine these two conditions, list price less than or equal to 10 and name
equals Monopoly. You would combine them with the OR operator in this case
because you're just looking for either one of these two conditions to be true not
necessarily both. AND and OR in these examples are binary logical operators.
Meaning that there's an operand on both sides of the operator. In SQL there's
also a unary logical operator which comes before its operand, and that is the NOT
operator. Here's a simple example using the NOT operator. Return all the games
except Risk. You could do this by using the WHERE clause WHERE NOT name
equals Risk. Of course, you could also use the NOT equals comparison operator to
do this that gives the same results and that's a clearer way to write it for this
example. If you've used a programming language, you might be accustomed to
using symbols for these logical operators.

Often, it's an exclamation mark for the NOT operator, an ampersand for the AND
operator, and a pipe character or the OR operator. But in SQL, you use the words
NOT, AND, and OR as logical operators. Also, NOT, AND, and OR are case
insensitive but the convention is to put them in all uppercase letters. Each of the
examples I showed used just one logical operator; AND, OR, or NOT. But you can
write arbitrarily complex expressions that use as many logical operators as you
want in whatever combination you want. But if you use multiple logical operators
together in an expression, you need to be mindful of order of operations. In SQL,
the precedence of logical operators is NOT, AND, and OR in that order.

If you forget that you can end up with a totally incorrect result. For example, if
you want to return all the games except Candy Land and Risk, you might write
expressions like these. NOT name equals Candy Land AND name equals Risk. Or
NOT name equals Candy Land OR name equals Risk. You might think that the NOT
would be applied to both of the equality comparisons coming after it, but that is
not what happens. The NOT operator applies only to the equality comparison
immediately after it. So both of those statements return results that are not what
you're looking for.

To get the result you're looking for, you need to use the NOT operator before
both equality comparisons, and combine them with an AND operator. That gives

the result you're looking for. Alternatively, you could just use the NOT equals
comparison operator, that would also work fine. Another option is to use
parentheses around parts of the expression to control the order of operations.
Using parentheses, you can override the usual rules of operator precedence.
Parenthesize sub-expressions are evaluated first. For example, you can enclose
name equals Candy Land or name equals Risk in parentheses, then put the NOT
operator before the opening parenthesis, so it negates the entire sub-expression
in parenthesis. This will give the result you expect.

All the games except Candy Land and Risk. Here's an example that demonstrates
the precedence of the AND operator over the OR operator. I'll combine the first
two examples I showed in this video. You're looking to buy a game that's six
people can play and you have $10 to spend on it, but you already own Monopoly,
so that's an option too. To express this in a WHERE clause, you need to combine
three comparisons into one boolean expression. You might try to do it like this,
WHERE list_price less than or equal to 10 OR name equals Monopoly AND
max_players greater than or equal to 6.

That might seem correct, but because the AND takes precedence over the OR, the
max_player is greater than or equal to 6 part first gets combined with the name
equals Monopoly part. This limits the results only to Monopoly. Then the
list_price less than or equal to 10 part on the left side of the OR broadens this to
include any game with list_price less than or equal to 10. So you end up with
Candy Land in the results set, even though Candy Land has max_players four. The
solution is to use parenthesis to express what you really intended. The $10 limit
on the list price or the game being Monopoly, that's one condition that must be
true, and the max_players being six or more, that's a separate condition that must
be true. So you should put parentheses around the list price and name conditions
to combine them into one condition.

That fixes the precedence problem and gives you the result you're looking for. It's
important to clearly understand the conditions that you want to use to filter the
data before you try to express those conditions in a WHERE clause. So as I've said
before when you're doing a data analysis to answer a question that someone
asked to you, then you might need to ask them to clarify the question. Or you
might need to make some assumptions but then clearly communicate those
assumptions when you share your results. Also, Boolean logic can be confusing.

So when you're working as a data analyst, don't be afraid to ask someone else to
review your more complex boolean expressions to check your logic. Also, always
do a sanity check on your result. Take a look at the number of rows in the results
set and examined some of the values in it to try to catch errors that you might
have made that would cause the result to be different than expected.

OTHER RELATIONAL OPERATORS

In an earlier video, I described the comparison operators like equals and less than,
that you can use to make comparisons in an expression in SQL. Each of these
takes a single operand on the left side and a single operand on the right side.
There are a couple other operators in SQL that are similar to these but they take
more than one operand on the right side, these are the IN and BETWEEN
operators. The IN operator compares the operand on the left side to a set of
operands on the right side. It returns true if the operand on the left matches any
value in the set on the right. Here's an example, this statement filters the games
table by the name column returning only the rows in which the value in the name
column is in the specified set of three literal strings; Monopoly, Clue and Risk.
On the left of the IN operator is the column reference, name, and on the right
side is the set of three literal values separated by commas and enclosed in
parentheses. This is the syntax you use with the IN operator. This example uses
character string operands but you can use any datatype. However, the operands
on the left and right should have compatible datatypes just like with the
comparison operators. Also, this example uses a column reference on the left and
literal values in the list on the right but you can use any combination of column
references, literal values, and expressions on either side.

You could get the same result by using three equality tests with OR operators
combining them into one Boolean expression. But as you can see using the IN
operator is more concise and more readable especially if you have a large set on
the right side. Also, some SQL engines can process a query more quickly and
efficiently when it uses the IN operator instead of multiple equality tests. The
BETWEEN operator compares the operand on the left side to a lower bound and
an upper bound both specified on the right side. The comparison returns true if
the operand on the left is greater than or equal to the lower bound and less than
or equal to the upper bound.

Here's an example, this statement filters the games table by the min_age column,
returning only the rows in which min_age is greater than or equal to eight and
less than or equal to 10. The BETWEEN operator is typically used with numeric
operands like in this example, you can use it with non-numeric operands like
character strings, but I would not recommend doing that yet. You need to learn
first about how SQL engines compare the ordinal values of character strings and
that's a topic you'll learn about later in this course. Also, this example uses a
column reference on the left and two literal values on the right, but you can use
any combination of column references, literal values and expressions as long as
the operands have compatible datatypes. You could get the same result by using
two comparison operators combined with an AND.

In this example, it would be min_age greater than or equal to eight AND
mean_age less than or equal to 10. But using the BETWEEN operator is typically
more concise and more readable. One case where the BETWEEN operator is
useful, is when you want to check a numeric value for approximate equality with
some margin of error allowed. Recall the earlier discussion about the uncertain
precision of decimal number comparisons, using BETWEEN is one way to work
around that. Both IN and BETWEEN can be used with the word NOT immediately
before them, that negates the result of the comparison. So NOT IN returns true if
the operand on the left does not match any of the values in the set on the right.
NOT BETWEEN returns true if the operand on the left is less than the lower bound
or greater than the upper bound.

UNDERSTANDING MISSING VALUES

When you're filtering data based on some conditions, it's important to consider
whether the conditions are known for all the rows or not. The presence of missing
or unknown values in the data, can make it impossible to determine weather
conditions are true or false. For example, if the price of some board game is
unknown, then it's impossible to determine whether that price is less than $10.
Maybe it's less, maybe it's more, maybe it's exactly $10, you have no way of
knowing. Life would be easier if you never had to work with missing values. But
the reality is that many datasets have them, and as a data analyst, you'll need to
handle them properly.

So the next few videos and readings are all about how to work with and interpret
missing or unknown values. In SQL, a null value is a value that's missing or

unknown. This is represented by the keyword "null" in SQL expressions, and in
result sets. The small tables I've used in the examples up to this point like the
games table and the crayons table, do not have any null values in them. But some
of the other tables do. Among the small tables the ones that have null values are
the offices table in the default database, and the inventory and card_rank tables
in the fun database.

The null values that are in these different tables all look the same, they're all just
null. But the meaning or interpretation of null values, what they actually
represent, can differ based on the context. In the offices table, the row
representing these Singapore office has a null value in the state_province column.
The reason that value is null, is that Singapore is not divided into states or
provinces. So the null there means not applicable. In the inventory table, there is
a null in the aisle column and another in the price column. In this table what these
nulls mean are, we don't know what aisle the game clue is in the dicey shop and
we don't know what the price of Candy Land is in the Board 'Em shop.

The nulls here mean unknown. In the card_rank table, there is a null in the value
column, in the row representing ace. The reason that's a null, is that the value of
an ace card can vary. For instance, in the card game blackjack and ace card can be
worth either one point or 11 points. So this null means undefined or
indeterminate. Real-world data sets often have lots of missing values in them.
There are many datasets in the real world that have more missing values than non
missing values. These are referred to as sparse datasets. None of the tables on the
VM are like that, but some of the tables in the fly database which contain real-
world data, do have many missing values. For example, in the flights table the
actual departure time column, depth_time, and the actual arrival time column,
ARR_time, have lots of nulls.

Some of these nulls represent flights were canceled, others are there because of
data collection errors. There's one row in the flights table representing the
famous US Airways Flight 1549. This flight took off from LaGuardia Airport in New
York, ran into a flock of geese that caused both engines to fail, and ditched in the
Hudson River. You might have heard about this. There was a movie about its
starring Tom Hanks. No. Not that solely. Yes. That's the one. Anyway, try writing a
query to find this flight in the flights table. It was on January 15th, 2009, the
carrier is US, the flight number is 1549, and the origin airport is LGA.

After you write and run a query that returns that row, take a look at which
column values are missing in this row. In each of the examples I showed so far in
this video, you could see the null value in the table or in the results set. Null
values are mostly straightforward to interpret when you can spot them. You
might have some questions about what they mean, but at least you know they're
there and you can interpret the results accordingly. However, null values become
more of a tricky problem when you inadvertently filter them out of your results
using a WHERE clause. Recall that when you use a WHERE clause, you specify the
filtering conditions with a boolean expression, and only the rows for which the
boolean expression evaluates to true are returned in the result set. So far we've
assumed that for each row, a boolean expression will evaluate to either true or
false. But if a table has null values in it, then there is a third possibility, a boolean
expression could evaluate to null.

That's because as I said at the beginning of this video, missing values can make it
impossible to determine whether some conditions are true or false. Rows in
which the boolean expression in the WHERE clause evaluates to null, are omitted
from the results just like the rows where it evaluates to false. This is a really
important concept to understand so I'll repeat it. Any rows in which the
expression in the WHERE clause evaluates to false and any rows in which it
evaluates to null, are filtered out excluded from the result set.

This can have important implications for interpreting query results. Here's an
example to demonstrate this using the inventory table in the fun database. This
table contains information about board games that are in stock at a couple of
shops. What if you wanted to know which games are available in these shops for
less than $10? To find this, you would run a query like, SELECT star FROM
fun.inventory WHERE price less than 10, and you would get a result with just one
row, the game clue in the shop Dicey, which has the price $9.99. You might
interpret this result and make a statement like, there is only one game available
at the shop that's priced under $10. But this is not necessarily true.

There is a null value in the price column indicating that the price of Candy Land in
the Board 'Em shop is unknown. When a numeric value is unknown, you cannot
determine whether it's less than 10. There's just not enough information to know
whether it is or not. So because of this null value in the price column, it's
misleading to say there is only one game at these shops priced under $10. It

would be better to make a statement like, there is at least one game at the shops
possibly two for less than $10, or there is only one game at the shops that we
know has a price of less than $10 or something like that.

As a data analyst, you can avoid a lot of trouble and blame by being mindful of the
possibility of missing values, and phrasing your interpretations to account for that
possibility. It's also important to explicitly check for null values and handle them
in your queries, that's the subject of the next video. Also, if you took the first
course that's part of this specialization, or if you have any past experience with
traditional relational database systems, you might be familiar with the concept of
null constraints. Null constraints can prevent data with null values from being
loaded into the database in the first place, but distributed SQL engines like Hive
and Impala, do not generally support these constraints. The way they work makes
it impractical. So you often need to assume that any column in any table could
have null values in it.

SQL engines provide several facilities for identifying and handling null values in
tables. These includes several operators and functions that you can use in
expressions in the SELECT clause or in the WHERE clause. In this video, I'll
introduce the operators. Then in the next video, I'll introduce some of the
functions. But there's one thing you need to understand first. You cannot test for
null values using the standard comparison operators like equals, not equals, less
than, and so on. For example, you might think that you could return the row with
the missing price in the inventory table using the WHERE clause, where price
equals null. You might think you could return all the other rows except this one
using WHERE price not equals null. But neither of these work that way.

They would both return zero rows. That's because when you use the standard
comparison operators in SQL expressions, any value compared to null always
returns null. Recall from the last video, when the expression in the WHERE clause
returns null for a row, that row is excluded from the results set. I want to
emphasize this point, that whenever you use a standard comparison operator in
an expression than any value compared to null always yields null. For example,
five equals null, evaluates to null. Five not equals null, evaluates to null. Five less
than null, evaluates to null. Even null equals null evaluates to null, and null not
equals null also evaluates to null. Look at the last two examples here. The best
way to understand these is to remember that null means some unknown value.

So does some unknown value equals some unknown value or are they different?
There's just no way to know. These comparisons return unknown, they return
null. In SQL statements, to check for null values you need to use a special
operator. The IS NULL operator. You use this operator by putting the keywords IS
NULL after a column reference or expression. There's another version of this
operator, IS NOT NULL. Here's an example.

If you want to return only the rows of the inventory table where the price is null,
you would use the WHERE clause, WHERE price is NULL. This returns the one row
representing Candy Land in the boredom shop. If you want to return all the rows
except the one where the price is null, you would use WHERE price is not NULL.
That returns all the other rows from the table. Returning to the famous case of US
Airways Flight 1549, recall that in the row in the flights table representing that
flight, the departure time is not missing, but the arrival time is missing. Go ahead
and modify the SELECT statement you wrote for the question about that in the
last video, this time return the rows representing all the flights on that same day,
January 15th, 2009 that have non-missing departure time in the depo_time
column and missing arrival time in the ARR_time column.

You'll need to use both IS NULL and IS NOT NULL to do this. In addition to IS NULL
and IS NOT NUL, there is another pair of operators that can help you to handle
null values. They are, IS DISTINCT FROM and IS NOT DISTINCT FROM. I'll explain
this with an example. The office's table in the default database has four rows
representing four different offices. What if you wanted to write a WHERE clause
to filter out the office in Illinois, to return the three offices that are not in Illinois.
You might try to write a WHERE clause like WHERE state_province not equal to
Illinois. But this returns only two rows. Though row representing the Singapore
office is not in the result set. That's because the state province value in that row is
null, and null not equal to Illinois evaluates to null. So that row is excluded from
the results set. But in this case, you know from context that this null value doesn't
mean unknown, it means not applicable because Singapore does not have states
or provinces. This is the type of situation where the IS DISTINCT FROM operator is
useful. If you replace not equals with IS DISTINCT FROM, then the results set
includes the Singapore office.

The IS DISTINCT FROM operator is like the not equals operator, but it treats null
values and non null values as explicitly unequal. Whenever the operand on one

side is null and the operand on the other side is not null, it evaluates to true.
Compare that to the not equals operator which evaluates to null in that case.
Also, if both operands are null, then IS DISTINCT FROM evaluates to false. It treats
any two null values as equivalent. So null, IS NOT DISTINCT FROM null, they are
the same. Compare that with the not equals operator which evaluates to null
when both operands are null. You can rewrite an expression that uses IS DISTINCT
FROM to instead use a not equals comparison and one or two tests to determine
if the operands are null or not. But it's more concise to use IS DISTINCT FROM.

There is also a version of this operator that negates the result of the comparison,
IS NOT DISTINCT FROM. This is like the equals operator, except when it compares
a null value with a non-null value, it returns false instead of null, and when it
compares two null values it returns true instead of null. Some SQL engines offer a
shorter way to write the IS NOT DISTINCT operator. It's less than sign, equals sign,
greater than sign. This shorthand notation does exactly the same thing as IS NOT
DISTINCT FROM and it's supported by Hive, Impala, and MySQL. There is no
special shorthand notation for IS DISTINCT FROM.

Reading: Reading Missing Values in String Columns

This reading describes how the three logical operators—AND, OR, and NOT—
work when one or both of their operands are NULL.
Many misunderstandings about NULLs in Boolean logic arise when you
confuse NULL with false. So remember: NULL does not mean false; it means
“unknown.”
The examples below use this sample table, which is not available to query in the
VM:

name age siblings

An 8 1

Belinda NULL 3

Chand 3 NULL

Delmar NULL NULL

Enise 1 2

The AND Operator

https://www.coursera.org/learn/cloudera-big-data-analysis-sql-queries/supplement/yOELa/missing-values-in-string-columns
https://www.coursera.org/learn/cloudera-big-data-analysis-sql-queries/supplement/yOELa/missing-values-in-string-columns

For an AND expression to return true, the operands on both sides must be true.
On the other hand, if either expression is false, then the expression returns false.
This means, if one operand is NULL and the other is true, then the AND
expression returns NULL. If one operand is NULL and the other is false, then it
returns false. If both operands are NULL, it returns NULL.

Expression Value

true AND NULL NULL

false AND NULL false

NULL AND NULL NULL

Look in the example table above for children that you know are under the age of
two and have more than one sibling. Which can you say definitely do or do
not match the criteria?
Here are the results:

name age < 2 siblings > 1 age < 2 AND siblings > 1

An false false false

Belinda NULL true NULL

Chand false NULL false

Delmar NULL NULL NULL

Enise true true true

The OR Operator

For an OR expression to return true, only one of the operands needs to be true. It
is only false if both operands are false.
If one operand is NULL and the other is true, then the OR expression returns true.
If one operand is NULL and the other is false, then it returns NULL. If both
operands are NULL, it returns NULL.

Expression Value

true OR NULL true

false OR NULL NULL

NULL OR NULL NULL

For example, look in the table above for children who are under the age of two or
have more than one sibling. Which can you say definitely do or do not match the
criteria?

Here are the results:

name age < 2 siblings > 1 age < 2 OR siblings > 1

An false false false

Belinda NULL true true

Chand false NULL NULL

Delmar NULL NULL NULL

Enise true true true

The NOT Operator
When the unary operator NOT is applied to a NULL operand, the result
remains NULL.

Expression Value

NOT NULL NULL

The expression NOT NULLin the table above does not represent the IS NOT NULL
operator; it is simply the unary operator NOT applied to the literal Boolean
value NULL.
Once again, look in the table, this time for children who are not under the age of
two. Which can you say definitely do or do not match the criterion?
Here are the results:

name age < 2 NOT age < 2

An false true

Belinda NULL NULL

Chand false true

Delmar NULL NULL

Enise true false

Try It!
For this table of data, what would be the result of each expression, for each row
in the table? Click here for the answers.

https://www.coursera.org/learn/cloudera-big-data-analysis-sql-queries/resources/Lrtnf

title year length

If 1993 4:31

Security 1969 NULL

Coming Around Again NULL 3:41

Seasons of Love 1996 2:52

Love So Soft 2017 2:52

1. year < 2000 AND length > 4:00
2. year < 2000 OR length > 4:00
3. NOT(year < 2000 OR length > 4:00)

 When working with character string columns, a couple of misconceptions often
arise around the issue of missing values.

An empty string, also called a zero-length string, is not the same thing as
a NULL value. A literal empty string is written in a SQL expression as a pair of
opening and closing quotes with nothing between them (''). When working with
real-world data, watch out for string columns in which the absence of a known
value is represented by an empty string instead of a NULL. The expressions
required to find and handle empty strings are different than the expressions to
find and handle NULLs. For example, to filter out the rows that have an empty
string in the column named string_column, you would use: WHERE
string_column != '' or WHERE length(string_column) > 0 instead of: WHERE
string_column IS NULL When you are working with real-world data, always
inspect the data to determine how missing values are represented. If necessary,
ask the person responsible for maintaining the data to tell you how missing values
are represented.

The literal string 'NULL' is also not the same as NULL. This literal string is not a
missing value, it's a four-character string composed of the letters N, U, L, and L.
The letters could also be in other cases: 'null' or 'Null' for example. Imagine being
the technology journalist Christopher Null, whose last name (not a pseudonym!)
often is not recognized by applications that don't distinguish between the literal
string and the missing value NULL! (Read about it in "Hello, I'm Mr. Null. My
Name Makes Me Invisible to Computers.")
Be mindful of these issues when you work with character string columns.

https://www.coursera.org/learn/cloudera-big-data-analysis-sql-queries/lecture/RdbnM/conditional-functions

CONDITIONAL FUNCTIONS

 In this video, I'll introduce some built-in functions, that are often used for
handling null values. Some of these can be used for other purposes too. Some
other functions I'll describe here are very common, and are built into virtually
every SQL engine. Others are not universally implemented. When you're using
any one of these functions, always do a test first to check for errors, and to check
that the output is what you expect. The if function takes a Boolean expression as
the first argument. If the expression evaluates to true, it returns the second
argument. If not, it returns the third argument. Here's an example. This select
statement uses the if function in an expression in the select list. It checks each
row to see if the value in the price column is null. It returns the value 8.99 if it is
null, otherwise it returns the actual value from the price column. The resulting
column has the alias correct price.

 In the results side, you can see that the one null value, in the price column has
been replaced with 899. Here's another example using the if function. This one
demonstrates that, when the expression in the first argument evaluates to null,
the if function returns the third argument, the same as if the expression evaluated
to false. The expression here price greater than 10 evaluates to true for the rows
with monopoly, and risk. So for those the if function returns the second
argument, high price. The expression evaluates to false for clue, and to null for
Candy land. So for both of those it returns the third argument low or missing
price. So the if function allows you to conditionally return one of two values.

But if you want to conditionally return more than two different values, you can
use a case expression. This uses a different syntax, than the built-in functions. I'll
demonstrate this with an example. In the previous example, I use the if function
to give each game one of two designations; high price, or low or missing price.
Here, I use a case expression to give them three designations; high price, low
price, or missing price. The case expression begins with the keyword case.
Following that there's a series of clauses, that each begin with the keyword when.
After each 'When' keyword, there's a Boolean expression, then the keyword then,
and an expression giving the result.

If the Boolean expression evaluates to true, then that result is returned.
Otherwise, it continues to the next when clause. After all the when clauses, there
is an else clause. That gives the result to return when none of the above Boolean

https://www.coursera.org/learn/cloudera-big-data-analysis-sql-queries/lecture/RdbnM/conditional-functions
https://www.coursera.org/learn/cloudera-big-data-analysis-sql-queries/lecture/RdbnM/conditional-functions

expressions are true. Finally the case expression ends, with the word end. There's
no punctuation between the when clauses, and you can write the whole case
expression on one line, or you can use extra white-space like I did here to make it
more readable. Case expressions are really useful for implementing complex
conditional logic in an expression in the select list.

So the if function, and the case expression are both useful for handling null
values, and they're also useful for some other kinds of cases where you need to
implement conditional logic in a SQL expression. The remainder of the functions
I'll describe in this video, are narrower in the scope of their application, and they
pertain just few null value. The null if function, takes two arguments, and returns
null if the two arguments are equal. If they are not equal, it returns the value of
the first argument. That might seem like a puzzling thing for a function to do, and
it probably doesn't sound very useful at first, but there are some particular cases
where it is useful.

 I'll demonstrate one such case with an example using the flights table in the fly
database. You probably remember from elementary mathematics, that you're not
supposed to divide by zero. If you try to divide by zero in an expression in a select
statement, some SQL engines like Postgres SQL will throw an error. Others like
Impala, will return a special value signifying that the result is infinite, or that it's
not a number. The null if function can help you to avoid this. The expression in
this example divides the flight distance in miles, by the time spent in the air in
minutes. To compute the average speed, it multiplies that by 60 to get the units in
miles per hour. The trouble is that there are some rows in the flights table, in
which the air-time is zero. Air-time is in the denominator in this division. So you
need to do something about those zeros to avoid dividing by them. If you use the
nullif function as shown here that replaces these zeros with nulls. Dividing
something by null, just returns null.

But that's okay, it's better than getting an infinite value or an error. The nullif
function, is really just shorthand for a case expression, or an if function with the
argument specified in a certain way, but it's shorter to write it using the nullif
function. Another case where the nullif function is useful, is when there is some
particular value that's used to represent a missing value, but it's not a null. For
example, there are many data sets where values like 999 are used to represent
missing values in numeric columns.

This kind of thing is unfortunately very common, and if you don't properly handle
these values, by converting them to actual nulls, they can cause all kinds of
problems. The nullif function can help you to work with data like this. There's
another function that's named ifnull in some SQL engines. It's named NVL in some
others. This function tests if an expression evaluates to null. If it's not null then it
returns the value of the expression. If it is null then it returns some other value.
Here's an example of this function. In the flights table, the air-time column has
some null values in it. For whatever reason the value is missing for some of the
flights.
Say you're looking specifically at flights from New York EWR, to San Francisco SFO,
and you want to replace those missing air-time values, with an estimated value. I
happen to know that a typical flight from New York to San Francisco is in the air
for about 340 minutes. So I want to replace those nulls with 340. You can do this
with the ifnull function as shown here. The first argument is the column reference
air-time, and the second argument is the value to replace the nulls, 340. The
result set from this query will not contain any nulls. The final function I'll
introduce in this video is coalesce. Coalesce can take any number of arguments,
and it returns the value of the first argument, that's not null. If they're all null, it
returns null. Here's an example.

In the flights table, there is an actual arrival time column, and a scheduled arrival
time column. There are a lot of missing values in the actual arrival time column
but very few in the scheduled arrival time column. Suppose you want to return
the actual arrival time for each flight, but if it's missing you want to fall back on
the scheduled arrival time, and a return to that instead of a null if possible. To do
this, you can use the coalesce function as shown here. The first argument is the
column reference ARR time, and the second argument is the column reference,
scaled ARR time. You could use more arguments.
Whenever you use these conditional functions, check that they're available with
the SQL engine you're using, and test them out to verify that they're working as
you expect, before you use them to produce a result that you analyze or send to
someone else.

USING VARIABLES WITH BEELINE AND IMPALA SHELL

https://www.coursera.org/learn/cloudera-big-data-analysis-sql-queries/lecture/eTi1g/using-variables-with-beeline-and-impala-shell
https://www.coursera.org/learn/cloudera-big-data-analysis-sql-queries/lecture/eTi1g/using-variables-with-beeline-and-impala-shell

In the honors lessons in the previous weeks, you learned about Beeline and
Impala Shell. You learned how to use these two command line tools interactively
and non-interactively. In the videos in this honors lesson, you'll learn about some
additional capabilities of these command line tools and you'll see how you can call
them from shell scripts. You'll also learn about some different options for
integrating Hive and Impala with scripts and applications. In this video, I'll show
you how to use a feature in Beeline and Impala shell called variable substitution.
This feature enables you to parameterize queries. In other words, it enables you
to take names or values that are hard-coded into your SQL statements and
replace them with variables. This feature is implemented differently in Hive and
Impala and the syntax differs slightly between them. First, I'll describe variables
substitution in Hive, I'll use a couple different examples to demonstrate different
applications of it. One situation where variables substitution is useful is when you
have two or more statements in a SQL script and there's a particular literal value
that's used in multiple places in the statements. In the example shown here, there
are two select statements in the SQL script file game_prices.sql and the literal
string, Monopoly, is used in both of these statements.

The trouble with this is that if you want to change this literal string to something
else, say from Monopoly to Clue, then you need to change it in more than one
place. With only two places it's not so bad, but imagine there were dozens of
places where you needed to change the value that would be cumbersome.
Variable substitution provides a solution to this. At the top of the SQL scripts, you
can add a set statement to assign a value to a variable. In this example, the
variable named game is assigned the value Monopoly.

The syntax of the set statement is unlike other SQL syntax, it begins with the
keyword SET followed by a space, then the word hivevar and a colon. After the
colon is the name of the variable you want to assign, in this example, it's game.
Then there's an equal sign then the value you want to assign to the variable. You
should not use quotes around the value in a set statement even if it's a character
string. Elsewhere in SQL, you do need to use quotes around literal strings but the
SET statement is special. You can use spaces on either side of the equal sign if you
want, Hive will trim any white-space from the beginning and end of the value
after the equal sign.

White-space inside the value like spaces between words is retained. Finally, you
terminate the set statement with a semicolon. On the lines below the SET
statement you can use this variable in your SQL statements, to do this you use the
syntax shown here, ${hivevar:game}. Then when you execute the statements in
the SQL file using the Beeline command with the dash f option. Hive replaces each
instance of this dollar sign curly brace hivevar placeholder with the value that's
assigned to the variable. In other words, it substitutes the assigned value in each
of these places. This example assigns just one variable then uses it in two places,
but you can use more than one set statement to assign multiple variables with
different names and you can use those variables in as many places as you need
following the set statements.
A different situation where variable substitution is useful is when you have a SQL
statement in a file and you want to run it many times but with a different literal
value substituted in each time.

In the example shown here, there is just one SELECT statement that returns the
hexadecimal color code for the crayon with the specified name, it's red in this
case. If you wanted to run the same query for many different colors it would be
cumbersome to keep editing the SQL script file to change the name of the color in
the where clause. Variable substitution provides a solution to this. First, you
replace the hard-coded value in the SQL script with a variable using the same
dollar sign curly brace hivevar syntax I described earlier.

The variable is named color in this example. Then instead of using a SET
statement to assign a value to the variable, you use a command line argument to
assign it. At the command line, you use the beeline command with the dash f
option to execute the statement in the SQL file. In this example, it's hex_color.sql.
Right before the dash f option, you use dash dash hivevar followed by the name
and the value of the variable. The syntax is dash dash hivevar a space, then the
name of the variable an equals sign and the value of the variable enclosed in
quotes. Unlike with the SET statement you should use quotes around the value in
this case, so the operating system shell passes it correctly to Beeline.

When you run the beeline command, Hive replaces the dollar sign curly brace
hivevar placeholder with the value specified on the command line. In this
example, there was just one statement in the SQL file but you can have more than
one. You can also use multiple different variables. To do that you need to specify

dash dash hivevar on the command line once for each name-value pair as shown
here. This example returns the name of the crayon that has the specified red
green and blue values. So that's how you use variable substitution with Beeline.
For Impala shell it's very similar, there's actually only one difference, with Impala
shell you use var instead of hivevar.

Aside from that, everything works the same as I described with Beeline. When
choosing a name for a variable, stick to the same rules for valid identifiers that I
introduced earlier in the course and you'll be safe. You should use all lowercase
letters to avoid any questions about case sensitivity. Also, whenever you are
assigning literal string values that include apostrophes or quotation marks you
should always escape them with a backslash. You should do this regardless of
whether it's Beeline or Impala shell and regardless of whether you are assigning
the variable with a SET statement or on the command line.

CALLING BEELINE AND IMPALA SHELL FROM SCRIPTS

In this video, I'll close out the topic of Beeline and Impala shell, by showing how
you can invoke these two utilities using shell scripts. In previous videos,
demonstrating Beeline and Impala shell, I showed how you can run these utilities
by issuing Beeline or Impala dash shell commands directly at the operating system
command prompt. In this video, I'll show how you can put these commands inside
a text file along with other shell commands to create a shell script. Putting shell
commands in a script file, makes them easier to rerun later. Instead of entering
and running a whole series of commands at the command prompt, or copying and
pasting commands from a file you can simply issue a single command to run the
whole shell script or you could use a scheduler to run the shell script at some
designated times. Even if you're planning to run a series of commands only once,
still saving them all in a shell script has some benefits.

You can write the commands using an editor instead of right at the command
prompt so it's easier to see what you're doing. You'll have a clear record of what
commands you ran in case any questions arise. Shell scripts are sometimes called
Bash scripts because the most common command shell in the Linux and Unix
family of operating systems is called Bash. When you open the terminal on the
VM for this course, Bash is the shell you're using there. It's pretty straightforward
to include a Beeline or Impala shell command, in a shell script. I'll demonstrate

https://www.coursera.org/learn/cloudera-big-data-analysis-sql-queries/lecture/VtmDm/calling-beeline-and-impala-shell-from-scripts

this with an example. Here's a simple shell script named email_results.SH, .SH is
the usual file extension for shell scripts. The first line of the script has what's
called a hash bin. It tells the operating system to use bash to execute this script.
You should generally used that at the top of any shell script. Below that there are
two commands. The first command invokes impala shell in a non interactive mode
and queries a small subset of the rows from the Flights table. It saved the result to
a comma delimited text file named zero_air_time.csv. The second command
sends an email to fly at example.com with the specified subject and body and
with this file zero_air_time.csv attached to the email. You can write each
command on multiple lines in a shell script but you'll need to use a backslash at
the end of the line whenever the command continues onto the next line like in
this example. After you create a shell script and save it, you need to change the
permissions on the script file to allow you to execute it. You can do this using a
chmod command like the one shown here. Then to execute the shell script, use
the syntax shown here. At the terminal in the current directory where you saved
the shell script, Enter./ then the file name of the shell script and press enter to
execute it. You can also schedule shell scripts to run at specific times, and you can
run shell scripts from inside other scripts or programs or applications.

For example you can run a shell script with Python by using the call function in the
subprocess module. If you would like to try running this example on the VM, you
can create the email_results.SH file that I showed, change the permissions on it
and try running it. Just be sure to replace the example email address with your
own. I can't guarantee that the mail command will actually get the email to your
inbox. It depends on the configuration of your network and on your email
provider. When I tested it, it worked for me, but the email ended up in my spam
folder. You would have to do a bunch of complicated configuration to get it to
work reliably and that's beyond the scope of this video.

So as that example demonstrated, you can include Impala shell commands in a
shell script simply by entering the commands into the script file in the same way
you would enter them at the command prompt and it works the same way for
Beeline. Just make sure you invoke Beeline or Impala shell in non-interactive
mode in shell scripts. Refer back to the videos in the previous weeks honors
lesson to review the arguments that you need to use to do that. Shell scripting is a
big topic. I could say much more about it but that's beyond the scope of this
course. If you're already familiar with shell scripting, you should have no trouble

incorporating Beeline or Impala shell commands into shell scripts. If you want to
learn more about shell scripting, there are lots of good online tutorials and books.

For example, there are some books from the publisher O'Reilly on this topic.
When you include Beeline or Impala shell commands in shell scripts, you'll often
want to use other commands to process the result using various Linux utilities.
Some of them the more commonly used ones are said OK and grep and there are
some books about these two. If you would like to get more practice invoking
Beeline or Impala shell and shell scripts, see the reading following this video. In
the reading, there's an optional ungraded challenge exercise where you can write
a shell script to query the crayons table to return the hexadecimal code for a
specific color and then use the results to change the background color on the
desktop of the VM. This is meant to be a difficult to exercise and you might need
to learn more about shell scripting to complete it.

 (Optional Exercise) Change VM Desktop Color 30 min
Important: Read the entire exercise before starting!

In this exercise, you will write a shell script that prompts the user to enter a

crayon color, queries the hexadecimal code for that color from the crayons table

in the wax database, and uses that hexadecimal code to set the VM’s desktop

background to that color.

Begin with this partially completed shell script. The first line (after

the #!/bin/bash) prompts the user to enter the name of a color, and the last line

sets the color of the desktop background using a hexadecimal color code:

#!/bin/bash read -p "Enter the name of a crayon color: " COLOR

⋮

gconftool-2 -t str -s /desktop/gnome/background/primary_color "#$HEX"

Your task is to fill in the missing lines, to:

Invoke Beeline or Impala Shell to query the crayons table, using the environment

variable named COLOR in the WHERE clause of the SELECT statement, and return

the hexadecimal color code.

Assign the returned six-character hexadecimal color code to the environment

variable named HEX.

This is intended to be a difficult exercise. You might need to learn some more

about shell scripting to complete it. There is more than one correct solution. Start

https://www.coursera.org/learn/cloudera-big-data-analysis-sql-queries/supplement/a6WmE/optional-exercise-change-vm-desktop-color

with a basic solution, then later, if you like, you can improve your script to

gracefully handle edge cases and to avoid possible errors. (For example, what if

the user enters a color name that’s not in the crayons table?) Click here for

solutions and how to return to the original color.

Video: LectureQuerying Hive and Impala in Scripts and Applications

In the previous video, I described how you can write shell scripts that invoke
Beeline or Impala shell and I mentioned that you can run these scripts from other
scripts or programs or applications. However, that is not the only way to integrate
it program with Hive or Impala. There are some other programmatic interfaces
you can use. The three you should know about our ODBC, JDBC, and Apache
Thrift. These are three interfaces standards that were designed to make it easy
and efficient to integrate scripts and applications written in any language with
Sequel engines and other services. One major benefit of using these interfaces to
query Hive or Impala is portability. The drivers or libraries that are required to use
them can be installed on virtually any computer. To use Beeline or Impala shell on
the other hand, you need a local installation of Beeline or Impala shell, and that's
impractical or impossible on many systems. I'm not going to get into the details
about how to use these interfaces, they vary depending on what kind of system
you're running and what language your script or application is written in. But I will
show one example just to illustrate the concept. Here are a few lines of Python
code that use the Apache Thrift interface to connect to Impala and run a query.
The code fetches the results into a list to object and then prints the rows to the
screen. This code uses a Python package called Impala. You can run this code for
yourself on the VM. Open the terminal and use the command python in all
lowercase to start a Python session, then enter and run the code. Be sure to
include the leading spaces on the final line. Indentation has significance in Python
code. This is just a simple example but you could integrate this kind of data
retrieval code into any script or application to accomplish any kind of task. In fact,
many of the applications that data analysts use like BI and analytics software,
have the ability to query Hive and Impala and it's almost always built using one of
these interfaces most often ODBC or JDBC.
 Quiz: Week 3 Honors Quiz

WEEK 4

LEARNING OBJECTIVES

https://www.coursera.org/learn/cloudera-big-data-analysis-sql-queries/resources/x22kX
https://www.coursera.org/learn/cloudera-big-data-analysis-sql-queries/resources/x22kX
https://www.coursera.org/learn/cloudera-big-data-analysis-sql-queries/lecture/6Lu26/querying-hive-and-impala-in-scripts-and-applications
https://www.coursera.org/learn/cloudera-big-data-analysis-sql-queries/lecture/6Lu26/querying-hive-and-impala-in-scripts-and-applications
https://www.coursera.org/learn/cloudera-big-data-analysis-sql-queries/exam/KdurG/week-3-honors-quiz

 Aggregate data in a dataset to answer analytic questions
 Aggregate data on groups within a dataset to answer analytic questions
 Evaluate and defend choices on when to group and aggregate data over

specific columns
 Write and run a SELECT statement that filters data using aggregated values
 (Honors) Identify differences between versions of Hive, Impala, and Hue,

using documentation or experimentation

INTRO

Welcome to Week 4 of Analyzing Big Data with SQL. So far in this course, you
have learned about three of the clauses that you can use in a Select statement.
The Select clause, which specifies what columns should be returned in your query
result. The From clause, which specifies where the data you're querying should
come from. The Where clause, which filters the rows of data based on some
conditions. In this week of the course, you'll learn about two more Select clauses.
Group BY, and Having. These clauses enable you to answer questions about
aggregates of the data. But before you learn how to use these clauses, you need
to understand what aggregation is.

So I'll begin with a brief introduction to this concept. Then I'll describe some
common forms of aggregation and show how you can compute each one using a
built-in function in SQL. You'll see that the syntax for using these functions, is
mostly the same as for the built-in functions you learned about in previous weeks,
but the way they work and what they return is different. We'll also return this
week to the topic of missing values, and you'll see how SQL engines handle those
in aggregations. When you're working with large scale data, grouping and
aggregation are indispensable because they allow you to summarize all the rows
in a table, with a result set that has just a few rows. So at the end of this week,
you'll have the skills necessary to produce succinct summaries of enormous data
sets.

AGGREGATE OPERATIONS

Introduction to Aggregation

Aggregation is the act of taking multiple values and reducing them down to a

single value. Two of the simplest forms of aggregation, are counting and adding.

Everyone understands these but just for completeness, I'll show an example of

each using the employees table. Counting, simply means tallying up the roads

figuring out how many rows there are. It's easy to see that this table has five

rows. You do not need to look at any of the values in the rows to count them.

Adding or summing is also very simple but it does require you to look at the

values in the rows. For example, to compute the sum or total of all the salary

values, you add up all the values in the salary column.

The sum of these is $185,403. The result of an aggregation is called an aggregate.

So in these examples 5 and 185,403 are both aggregates counting and adding are

not the only forms of aggregation. Here are a few others. Computing the average

of the values in a column. The average is the sum of all the values divided by the

number of values. In this example the average salary is $37,080.60. Finding the

minimum value in a Column. The minimum salary is $25,784. Finding the

maximum value in a column. The maximum salary is $54,523. All of these are

types of aggregation. In the next video you'll learn about the built-in functions in

SQL for computing all of these.

COMMON AGGREGATE FUNCTIONS

SQL provides built-in functions for performing common aggregations. These are
called aggregate functions. In this video, I'll introduce the most important
aggregate functions and I'll describe what arguments they expect. SQL's aggregate
function for counting rows in a table is COUNT. To count rows, you do not need to
know what's in the rows. So the count function does not require that you specify
what values to aggregate.

In SQL, there's a special syntax for the count function. Its COUNT(*). You use an
asterisk, a star, as the argument, and this returns the number of rows. This star
syntax is used only for the COUNT function, not with other aggregate functions.
You'll see in a later video that you can specify different arguments to the COUNT
function but for now, just use COUNT(*). The aggregate function for adding is
SUM. SUM adds up the values in a particular column. When you use the sum

function in SQL, you need to specify what values to add up. So for example, you
could use SUM(salary) to add up the values in the column named Salary. You'll see
that for all the aggregate functions besides COUNT, you need to specify an
argument like this, so the aggregate function knows what values to aggregate.

The aggregate function for computing the average or mean of a column is AVG.
For example to calculate the average salary, you would use AVG(salary). The
aggregate function for computing the minimum, the lowest value in a column, is
MIN. So to calculate the minimum salary, you would use MIN(salary), and finally,
the aggregate function for computing the maximum, the highest value in a
column is MAX. So to calculate the maximum salary you would use MAX(salary).
These five aggregate functions are all provided by all the major SQL engines.
There are some other aggregate functions beyond these five but they're less
commonly used and they're beyond the scope of this course. The names of
aggregate functions are typically case insensitive, but by convention, we set them
all in capital letters. This is different from the names of other built-in functions
which we set in all lowercase letters. These different capitalization conventions
can help you to distinguish the aggregate functions from other functions in this
course.

COUNT(*) AND SUM(1)

Some data analysts use the expression SUM(1) instead of COUNT(*). These two

aggregate expressions do the same thing: they count the number of rows in a

table.

This is because when you use a scalar argument (in this case, 1) to an aggregate

function (in this case, SUM), then the aggregate function aggregates that same

value over all the rows.

For example, here is the toys table in the toy database:

id name price maker_id

21 Lite-Brite 14.47 105

22 Mr. Potato Head 11.50 105

23 Etch A Sketch 29.99 106

Imagine executing SELECT SUM(price) FROM toys; You can think of this as

running through the rows in the table, and for each row, add the value in price to

a running total. So you would get 14.47, then 14.47 + 11.50, then 14.47 + 11.50 +

29.99.

If instead you execute SELECT SUM(1) FROM toys; the result would be like

substituting the value 1 for each of those prices. Instead of 14.47 + 11.50 + 29.99,

you would have 1 + 1 + 1. That is, each row contributes 1 to the sum. This is the

same as counting the rows.

USING AGGREGATE FUNCTIONS IN THE SELECT STATEMENT

The most basic way to use aggregate functions in SQL query, is to use them in the
select list. Here's an example to demonstrate this. Recall that the aggregate
function for counting is count, and the syntax for using this function to count rows
is count star. If you want to use the count function to count the number of rows
in the employees table, then here's how you would do it. Select count star, from
employees. This returns a result set with just one row, and one column containing
the number five. There are five rows in the employees table and the count
function aggregated over all of them, reducing these five rows down to a single
value, the number 5. You can use a column alias to give a name to the column
that's returned by this statement. After count star, add as num underscore rows.
So now the result column is named num rows. The example I just showed use the
aggregate function count. Here's an example that uses sum. Select sum salary
from employees. This returns the sum of all the values in the salary column. They
add up to 185,403.

Again, you could add an as expression after sum salary to give an alias to the
result column. So count and sum are aggregate functions, and when you use an
aggregate function in a select clause, like in these examples, it makes an
aggregate expression. So count star and sum salary, those are aggregate
expressions. You can include two or more aggregate expressions in the select list,
like in this example, select min salary as lowest salary comma, max salary as
highest salary from employees. This returns a result set with just one row, but
with two columns, one for each of the aggregate expression. You can see the
lowest salary in the employees table is 25,784 and the highest salary is 54,523.
Those examples all used very simple aggregate expressions. They all had just a
single aggregate function, with no other functions or operators. But you can use
more complex aggregate expressions.

For example, this query returns the range or spread of the salaries in the
employees table. The aggregate expression is max salary minus min salary. Here's
another example of a more complex aggregate expression. This one answers the
question, if there's a 6.2 percent payroll tax for each employee, then what's the
total tax for all employees rounded to the nearest dollar? The aggregate
expression to compute this is, round sum salary times 0.062. You can also use an
expression as an argument to an aggregate function. The argument does not need
to just be a column reference, it could be any valid expression. In this example,
the expression round salary times 0.062, is used as the argument to the sum
function. This is just another way to answer the question from the previous
example, although the round function is applied differently here, and this might
make the result slightly different. In each of the examples I just showed, the
expression aggregates over all the rows, and returns a single row. That's what
makes these expressions aggregate expressions. They can combine values from
multiple rows, aggregating them together. These are different from the
expressions you learned about earlier in the course, which operate independently
on the values in each row. Those are called non-aggregate expressions or scalar
expressions. They return one value per row. When you write SQL queries, you
need to be careful about mixing aggregate and scalar operations. You can use
aggregate and scalar operations together in an expression like in some of the
statements I showed.

For example, you can take an average, then round it. Average is an aggregate
operation and rounding is a scalar operation, but they can be combined together
like this to form a valid aggregate expression. You can also use scalar arithmetic
operators together with aggregate functions to form a valid aggregate expression
like in this example, where you take a numeric column, multiply it by a literal
number, then find the sum. But aggregate and scalar operations can form invalid
expressions in some cases.

For example, you might try to use an expression like salary minus average salary
to try to compute the difference between each individual employees salary and
the average salary of all the employees. The right side of this expression
aggregates, but the left side does not. As a result, this expression is invalid and
will throw an error with most SQL engines. There is actually a valid way to
compute the difference between each individual employee salary and the average
salary of all the employees, but this is not it, and that's a more advanced topic

that's beyond the scope of this course. Also, you cannot use scalar and aggregate
expressions together in a select list.

For example, this query has two items in the select list. The first is just the column
reference first name, that evaluates as a scalar expression. It returns a value for
each row in the employees table. The second is the aggregate expression, sum
salary. That returns just one row that aggregates all the salary values in the
employees table. You cannot use both of these types of expressions together in
one select list. Most SQL engines will throw an error if you try. When you use
aggregate expressions in the select list, you can also use a where clause. You
learned about the where clause in the previous week of the course, and you can
continue to use it in this week of the course and beyond.

For example, to answer the question, how many employees make more than
$30,000, you could use count star in the select list, together with the where
clause, where salary greater than 30,000. This returns three. However, do not try
to use aggregate expressions in the where clause. The where clause always
processes individual rows, so you cannot use it to examine aggregates. All the
aggregation examples I showed in this lesson returned a results set with only one
row. They all aggregated the whole table down to a single row.

But what if you wanted to aggregate subsets of the table and return a result that
gives separate aggregates for the different subsets? This is what the group by
clause is for. You'll see how to use that clause in the next lesson. Interpreting
Aggregates: Populations and Samples

THE LEAST AND GREATEST FUNCTIONS

Two built-in functions that often cause confusion are

the least and greatest functions. These are often confused with MIN and MAX.

MIN and MAX are aggregate functions. They return the minimum or maximum

value within a column.

least and greatest are non-aggregate functions. They return the smallest or

largest of the arguments that are passed to them.

For example, the query:

SELECT MAX(red), MAX(green), MAX(blue) FROM crayons;

aggregates the full crayons table (which has 120 rows) down to a result set with

just one row. The three columns in the result set give the largest value of red, the

largest value of green, and the largest value of blue that exist in the full table.

Whereas the query:

SELECT greatest(red, green, blue) FROM crayons;

returns a result with 120 rows. Each row in the result set gives the largest of the

three RGB values (red, green, blue) that make up each crayon color.

The least and greatest functions are available in many (but not all) SQL engines.

One unusual aspect of the least and greatest functions is that they can take a very

large number of arguments. Recall that there are a few other functions like this

(including concat,concat_ws, and coalesce).

THE GROUP BY CLAUSE

All the examples of aggregation that I showed in the previous lesson, returned to
result set with only one row. They all aggregated the whole table down to a single
row. But what if you want to aggregate subsets of the table and return a result
that gives aggregates for each of the subsets? That is what the GROUP BY clause is
for. It splits a table into groups of rows so that the aggregates can be computed
for each group. I'll demonstrate this with an example.

First, recall from the previous lesson, that this is the SELECT statement that you
would use to count the number of rows in the employees table. SELECT COUNT(*)
from employees. There's just one expression in the SELECT list, so the results that
has just one column and it's an aggregate expression, so it aggregates the five
rows of the employees table down to one row in the result set. This query
answers the question: How many employees are there in total?

Each row represents one employee, so counting the total number of rows, gives
you the answer, five. But what if you wanted to answer the question, how many
employees are there in each office? There's a column named office_id whose
values identify which office each employee works in. The values are coded as
letters A, B, C, and E, representing four different offices. So instead of counting
the total number of rows, you want to count the number of rows that have each
unique office_id.

In effect, what you want to do is split up the employees table into four separate
tables. Each representing the employees in one particular office. Then count the
number of rows in each of those four separate tables. To do this, you add a
GROUP By clause to the SELECT statement. The GROUP BY clause specifies which
column to use to split up the table into groups. It comes after the FROM clause. In
this example, to split up the employees table by office, you use "GROUP BY
office_id." When you run this query, it returns a result set with four rows. One
row for each unique value of office_id. Like before, the result set has just one
column which now gives the count of the number of rows that have each unique
office_id. But with just this one column, you cannot tell which count corresponds
to which office_id. So you can add office_id to the select list and this makes the
query return two columns. The first gives the office_id and the second gives the
count of rows that have that office_id. This now answers the question we started
with, how many employees are there in each office? There's one employee in
office C, one in office E, two in office B, and one in office A.

You can optionally use a column alias to control the names of the columns in the
result set just like you can with any SQL query. So for example, you could add "AS
num_employees" after count star. So this example demonstrates the basic syntax
of a SELECT statement with a GROUP BY clause and the shape of the result set it
returns. Recall that the order of the rows in a result set is arbitrary. So these rows
might be in a different order for you, but their counts in the second column will
still match up with the corresponding office_ids in the first column, the same way
they do here. If you're familiar with spreadsheets or other software that can
produce summary tables or pivot tables, you might be more accustomed to
seeing the results presented like this with the rows and columns transposed so
each group, each office is represented as a column.

But SQL engines do not return results sets this way. SQL queries with a GROUP BY
clause always return one row per group. The columns of the result set are
specified by the select list, just like with any SQL query. You can use the GROUP
BY clause together with the WHERE clause in a SELECT statement. The WHERE
clause, if you use it, always comes before the GROUP BY clause. It filters the
individual rows of the table before they're grouped and aggregated. For example,
say you wanted to know how many employees with a salary of more than $35,000
are there in each office. To answer this, you would use the same query as before,

but with a WHERE clause added. The WHERE clause filters the rows of the
employees table before they're grouped and aggregated.

So the results that only includes the offices where there's at least one employee
with a salary greater than $35,000. You can see from the results that there are
two employees with a salary greater than 35,000 in office B and one in office E.
The absence of the other offices A and C, in this result set, indicates that there are
no employees with a salary greater than 35,000 in those offices. In other words,
all the employees in the other offices have salary less than or equal to 35,000.

CHOOSING AN AGGREGATE FUNCTION AND GROUPING COLUMN

When you write a SQL query that uses aggregation and grouping, you need to
choose which aggregation function to use and which column to group by.
Sometimes these choices are straightforward, but other times they're not so
obvious. In this video, I will pose some different questions and show SQL queries
that answer them using different aggregate functions and different grouping
columns. These examples use the inventory table in the [inaudible] database.
Each row in the inventory table represents a particular game that's in stock at a
particular shop.

There is more than one copy of each game at each shop, and the number of
copies is given in the QTY or quantity column. Here's the first question. How many
different games does each shop have in stock? Since each row in the inventory
table represents a different game in a different shop, you can answer this
question by counting rows using the count function. Since it's asking at each shop,
you need to group by the shop column. So to answer this question, you would use
the query SELECT shop, count (star) FROM inventory GROUP BY shop. The result
shows that there are two different games in stock in the dicey shop and three in
the board 'Em shop. Now, say you wanted to answer a slightly different question.

How many total games are in stock at each shop? In other words, how many total
copies of the games are in stock at each shop? To answer this you need to use the
aggregate function sum to add up the values in the quantity column, and again
GROUP BY shop. So the query is SELECT shop, sum (quantity) FROM inventory
GROUP BY shop. The result shows that the dicey shop has 10 total games in stock

and the board 'Em shop has 18. With questions like these, language can be
ambiguous.

If someone asks how many games? Do they mean how many different games or
how many total copies of the games? When you're working as a data analyst, if
you're asked an ambiguous question like this, you should ask for clarification or
make some reasonable assumptions and then clearly communicate the
assumptions when you share your results. Here's another example. Say you want
to answer the question, how many total copies of each game are in stock? In this
question the grouping of interests is not shops, it's games. So to answer this
question you would use a select statement like this.

SELECT game, sum (quantity) as total quantity FROM inventory GROUP BY game.
The previous examples used the shop column in the group by clause and also in
the first position in the select list. But this example uses the game column there.
The results that shows that there are 18 copies of monopoly, three of clue, four of
candy land, and three of risk. But once again, questions like this can be
ambiguous. Was the intent really to consider the combined inventory of both
shops? That's what this query does. Maybe the intent was to count the copies of
each game separately for each shop.

In the inventory table, each row represents one particular game in one particular
shop. So to count how many copies of each game are in stock at each shop, you
actually don't need to use grouping an aggregation at all, you can just answer the
question simply by looking at the quantity values in the rows of the table. So
whenever you're writing a query to answer a question about some grouping of
the data in a table, always consider whether the rows of the table already
represent the grouping you're looking for.

GROUPING EXPRESSIONS

The simplest kind of GROUP BY clause, consists of, the key words GROUP BY,
followed by, a column reference. For example, if you are querying the games
table in the fun data base, you could use a GROUP BY clause like GROUP BY
min_age or GROUP BY max_players. But this is not the only form of a group by
clause, in this video you'll learn about what else you can do in this clause. Besides

a column reference you can also use an expression in the GROUP BY clause. For
example say you want to define two groups in the game's table. The group of
games that cost less than $10 and the group that cost $10 or more.

There is no existing column in the games table that defines these two groups, but
you can write an expression that uses the list price column to define them. The
simplest way to do this is with the Boolean expression list_price<10 this
expression returns a true or false value for each row or a one or a zero value with
some SQL engines. So all the games are grouped into these two categories.
Another way to do this is to use the if function in the GROUP BY clause. If
list_price<10, low price, high price. This also groups all the games into two
categories but here the groups are defined by the character strings, low price and
high price. And you could also do this with a case expression. That would give you
the flexibility to define more than two categories if you wanted to. .When you use
a grouping expression like in these examples, you generally need to use the
expression in the GROUP BY clause and also in the Select list.

If you don't include the grouping expression in the select list, then you can't tell
which row in the result set corresponds to which group. So in this example, to
count how many games are in each of these two price categories, you would use
the SELECT statement, SELECT list_price <10, COUNT (*) FROM games GROUP BY
list_price > 10. The result set shows that there are 2 low-price games and 3
higher-price games. I used the simple Boolean expression in this example but you
could use the the if function or a case expression. Whichever way you wanted to
write the expression, you would just repeat it in both the Select list and in the
GROUP BY clause.

But repeating an expression like this in two places can be cumbersome, so some
SQL engines offer a shortcut. With some SQL engines, you can specify the
grouping expression in the SELECT list. Give it an alias and then use that alias in
the GROUP BY clause. This way you do not need to repeat the grouping
expression twice. This is especially useful when the expression is long or complex.
This shortcut works with Impala, MySQL, and post PostgreSQL, but not with Hive,
and not with many other SQL engines. If you're using some other engine, try it to
see if it works. The reason this does not work with Hive and others Is that SQL
engines generally process the group by clause before they compute the

expressions in the SELECT list. Recall that there is a similar limitation with the
where clause.

But the developers of Impala, MySQL, and PostgreSQL implemented a work
around to allow column aliases in the group by clause even though it goes against
the usual order in which the clauses are processed. With Hive and the other SQL
engines that do not support this shortcut, you can still use an alias to give a name
to the grouping column in the result set but you cannot use that alias in the group
by clause. All the examples I've presented so far had only one column reference
or expression in the GROUP BY clause, but you can use more than one. After the
keywords GROUP BY, you can specify a list of column references or expressions
separated by commas. This is called the GROUP BY list. Here's an example with a
group by list that has two items. This statement groups by min_age and
max_players. It returns the counts of the number of rows in the groups defined by
these two columns.

When you specify two or more items in the GROUP BY list, the sequel engine
splits up the data into one group for each combination of the values that occur in
these grouping column. It splits the data into groups by the first column specified
in the GROUP BY clause. And then splits those groups further by the next column
specified and so on. Finally, it computes the specified aggregates on those groups.
In this example every game in the games table has one of these four
combinations of min_age and max_players. You can see in the results set that two
games have min_age 8 and max_players 6, so the count in this row is 2. The other
three games all have unique combinations of min_age and max_players, so those
counts are all 1. This example uses column references in the GROUP BY list. But
the items the list can be color reference, expression and column areas if the SQL
engine support them in the group by clause. You can include any name of these.
Using example that uses a column reference and an expression. If you're using a
SQL engine that allow aliases in the GROUP BY clause, then you could rewrite the
statement this way to avoid repeating the expression. These examples used two
items in the GROUP BY list, but you can use three or more, and of course, you can
use other aggregate functions besides count. And you can include multiple
aggregate expressions in the SELECT list.

GROUPING AND AGGREGATION, TOGETHER AND SEPARATELY

Grouping and aggregation go hand in hand. In practice, they're mostly used
together. But you can use an aggregate expression without a GROUP BY clause, and
it's also possible to use a GROUP BY clause without an aggregate expression. In this
video, I'll describe the rules governing how you can use each one without the other.
You can't use aggregation without grouping.

You can use an aggregate expression in the select list in a statement that has no
GROUP BY clause. When you do this, the SQL engine aggregates the whole table
down to one row in the results set. In effect, when you use an aggregate expression
with no GROUP BY clause, there is an implicit GROUP BY clause that creates one
group for the whole table. You can also use two or more aggregate expressions in
the select list with no GROUP BY clause. The result will still have just one row, but
it will have multiple columns, one for each of the expressions in the select list. Now
what about grouping without aggregation? You might imagine that if you ran a
query like select star from games, GROUP BY min age, that maybe it would return
a set of multiple result tables, each with one unique value of min age.

But SQL does not work that way. A query result can have only one table in it. When
you use a GROUP BY clause, the select list must consist only of aggregate
expressions, the expressions used in the GROUP BY list, and literal values. Here are
some examples to demonstrate what you can do. Here's the statement with a
GROUP BY clause but no aggregate expression. The select list has just one item
which is the grouping column, min age. This statement returns three rows, one for
each unique value of min age, and just one column, giving those values of min age.
There's nothing else in the select list so that's all it returns.

You could run a statement like this just to return the unique values of min age, but
it's typically better to do this using SELECT DISTINCT. Like this, SELECT DISTINCT min
age from games. That statement expresses the intent of your query more clearly.
It's better to use the GROUP BY clause only when you're actually going to compute
aggregates like in this example. The select list here consists of min age, the grouping
column, and max list price, an aggregate expression. This is the classic form of a
simple GROUP BY query. Here's an example that also has a literal value in the select
list. When you use a literal value in the select list in a statement with a GROUP BY
clause, that literal value is just repeated in each row of the result set. This is often

not useful, but there are some cases where you might want to do it like in this
example.

This statement groups the games table into three groups based on min age, and
returns the average list price, the tax rate, and the average list price with tax for
the games in these three groups. The tax rate is a constant value of 21 percent. It
does not vary between the groups. So, it's specified here as a literal value, 0.21. In
this case, it is helpful to display this literal value in the results set even though it's
just the same value repeated in each row. So, to review, when you use a GROUP BY
clause, the select list must consist only of aggregate expressions, the expressions
used in the GROUP BY list, and literal values. Although you can use a GROUP BY
clause with no aggregate expressions in the select list, it's better to use SELECT
DISTINCT for that instead. Unfortunately, not all SQL engines enforce these rules
for what's allowed in a select statement when you use a GROUP BY clause. MySQL
for example.

MySQL is a fine relational database system I've used it a lot, but it has one really
atrocious behavior in my opinion. It allows you to use non aggregate expressions in
the select list in a query that has a GROUP BY clause. For example, with MySQL, you
can run a query like select star from games grouped by min age. Most SQL engines
will throw an error if you try to run a query like this but not MySQL. What MySQL
does is it splits the games table into three groups based on min age, and then it
picks one arbitrary row from each group to include in the results set. If that seems
strange to you, I agree.

Similarly, MySQL will let you run this query which has in the select list min age, the
column that's in the GROUP BY clause, and list price, a column that's not in the
clause GROUP BY with no aggregation performed on it. In the results at the min age
column gives the three unique values of min age, but the list price column just gives
prices picked from arbitrary rows in the corresponding groups. To me, SQL engines
should not behave this way. There are some logical reasons for the behavior but
overall I think it causes much more confusion than it's worth, and it's best to avoid
writing queries like this. More about Grouping and Aggregation

NULL VALUES IN GROUPING AND AGGREGATION

In this video, you'll learn how SQL engines handle NULL values when they group
and aggregate data. But first, recall how NULL values are handled in queries that
do not group or aggregate. Here are some examples using the inventory table in
the fun database. In the inventory table, there are a couple of NULL values. One in
the aisle column and one in the price column. When you run a query that returns
NULL values in the results set, they are represented by the keyword NULL.

Although the way they're displayed might vary depending on what software
you're using to display the results. When you use an expression with arithmetic
operators or with most non aggregate functions, when an operand or argument is
NULL, the expression evaluates to NULL. For example, the NULL value in the price
column multiplied by 1.21 and rounded to two digits after the decimal returns
NULL. There are some special conditional functions that take a NULL argument
and return a non-NULL value, but those are a special case. When you use any of
the standard comparison operators in an expression, then any value compared to
NULL yields NULL.

So when the NULL value in the price column is compared to 10 in an inequality
expression, that returns NULL. Finally, recall that when you use a WHERE clause,
rows in which the Boolean expression in the WHERE clause evaluates to NULL are
omitted from the results just like the rows where it evaluates to false. So that's a
review of how NULL values are handled in queries that do not use grouping or
aggregation. Now let's consider how SQL engines handle NULL values in
aggregation. Here's a simple example that uses the aggregate function avg to
compute the average of the values in the price column for all the rows in the
inventory table.

Although one of the price values is NULL, this query does not return NULL, It
returns 21.99. That's because aggregate functions in SQL ignore NULL values.
Instead of returning a NULL result when some of the values being aggregated are
NULL, SQL engines just ignore the NULL values and use only the non-NULL values
to compute aggregates. Some other languages and systems work differently, but
this is what SQL engines do. The only case in which an aggregate function will
return a NULL, is when there are no non-NULL values to aggregate. For example, if
you use a WHERE clause to filter out all the games except Candy Land, then take
the average price, the query returns NULL because there are no rows with game
equals Candy Land that have a non-NULL price.

If you add a GROUP BY clause to the query, the same principles apply. Within each
group, NULL values are ignored and the aggregates are computed using the non-
NULL values. So although there are three games in the Board 'Em shop, the
average price of a game in that shop, $30, is calculated using just the two non-
NULL prices, $25 and $35. But if you GROUP BY game instead of by shop, then
there is one game, Candy Land, that has no non-NULL prices in the data. So in that
case since there are no non-NULL prices in that group, the average price for the
group is NULL. These examples all use the AVG function, but the same principles
apply for SUM, MIN, and MAX. Finally, let's consider how SQL engines handle
NULL values in grouping columns. I'll use the inventory table to demonstrate this.
Notice that there is a NULL value in the aisle column. Say we GROUP BY that aisle
column. Then, in the results set there is a row representing the group in which
aisle is NULL. So when there are NULL values in a column that you use in the
GROUP BY clause, a NULL group is created and it includes all the rows in which
that column value is NULL.

WHY AGGREGATE EXPRESSIONS IGNORE NULL VALUES

The previous video described how aggregate expressions handle NULL values
differently than non-aggregate (scalar) expressions. This reading describes the
reasons for this difference, and warns about how it can cause misinterpretations.
For a scalar expression, it would be misleading to report anything except NULL in
individual row values containing NULLs in the operands or arguments of the
expression. (Review the lesson, “Working with Missing Values,” in Week 3 of this
course for more about why this is so.)

However, for aggregate expressions, if NULLs were not ignored, then just
one NULL value in a large group of rows would cause the query to return
a NULL result as the aggregate for the whole group. By ignoring the NULL values,
aggregate expressions are able to return meaningful results even when there
are NULL values in the groups.

But sometimes this behavior can lead to misinterpretations, especially with sparse
data. For example, if you compute the average of a column in a table with ten
million rows, but only three of those rows have a non-NULL value in the column
you’re averaging, then the query would return a non-NULL average in the result.

This might mislead you into thinking that this average provides meaningful
information about all ten million rows, when it reality the average comes from
only three rows, and there is probably no reason to believe it is representative of
all ten million rows.

Therefore, it is important to explicitlycheckfor NULL values and handle them in
your queries, instead of just relying on aggregate expressions to ignore them.
One way to do this is to use an aggregate expression like:
SUM(column IS NOT NULL)
to return the number of rows in which column is non-NULL. In this
expression, column IS NOT NULL evaluates to true (1) or false (0) for each row,
and the SUM function adds these 1s and 0s up and returns the number of rows in
which column IS NOT NULL.
For example, when you run the following query, the second column in the result
tells you exactly how many non-NULL values were used to compute each of the
averages in the third column:
SELECT shop, SUM(price IS NOT NULL), AVG(price) FROM inventory GROUP BY
shop;

shop SUM(price IS NOT NULL) AVG(price)

Dicey 2 13.99

Board 'Em 2 30.00

The next video describes another way to check for NULL values in aggregates.

THE COUNT FUNCTION

Ah, greetings. I am The Count. Do you know? Oh! Look, a table with rows. I will
count the rows. One, one row. Two, two rows. Three, three rows. Four, four rows.
Five, five rows! Okay. That's enough of that. So as you saw, the inventory table in
the fun database has five rows. Recall that you can return the number of rows in a
table by using the COUNT function with an asterisk, a star, as the argument. So
COUNT(*) FROM inventory returns five. You can also use a GROUP BY clause. If you
do, then COUNT(*) returns the number of rows in each group. For example, this
query uses COUNT(*) and GROUP BY shop, and the result tells you that there are
two games in the Dicey shop and three games in the Board 'Em shop.

But there is another way to use the COUNT function. Instead of using * as the
argument, you can specify a column reference as the argument. When you do this,

the COUNT function does something different: it returns the number of rows in
which that column has a non-NULL value. For example, if I run the query, SELECT
COUNT(price) FROM inventory, then the result is not five, it's four because there
are four non-NULL values in the price column. If you include a GROUP BY clause,
then the result is not two and three like before, it's two and two; there are two
games in the Dicey shop with a non-NULL price and two games in the Board 'Em
shop with a non-NULL price.

So when you use a column reference or it could be an expression as the argument
to the COUNT function, then the COUNT function does not count the missing values
in that column, it ignores them. To understand why this is, remember that this is
what the other aggregate functions do, the functions like SUM and AVG, they
ignore NULL values. The COUNT function was designed to be consistent with these
other aggregate functions except in the case where you use COUNT(*). So the
general rule is that aggregate functions ignore NULL values, and the one exception
to that rule is when you use COUNT(*).

The COUNT function has another useful feature. You can use it to count the number
of distinct values, unique values, in a column. To do this, you use the keyword
DISTINCT inside the parentheses after COUNT. For example, to count the number
of unique values in the aisle column in the inventory table, you would run the query
SELECT COUNT(DISTINCT aisle) FROM inventory. This returns three, which tells you
that there are three unique non-NULL values in the aisle column. NULL values are
not counted regardless of whether or not you use the DISTINCT keyword. With
some SQL engines, you can specify more than one column reference or expression
after the DISTINCT keyword in the COUNT function.

This returns the number of unique combinations of the specified columns that exist
in the data. This works in Hive, Impala, and MySQL, but not in PostgreSQL. Also,
with some SQL engines, you can use more than one COUNT DISTINCT in a SELECT
list, like in this example which uses the crayons table. Here, the COUNT function is
used three separate times in the SELECT list and the DISTINCT keyword is included
in all three. So the result set has three columns giving the number of unique values
in the red column, the number of unique values in the green column, and the
number of unique values in the blue column. But with some other SQL engines
including Impala, you are limited to only one COUNT DISTINCT per SELECT list.
Impala will throw an error if you try to run this query. In the examples I just

presented, the DISTINCT keyword is used with the COUNT function inside the
parentheses after COUNT. But recall that this is not the only place where you can
use the DISTINCT keyword, you can also use it just after the SELECT keyword
without any aggregate function. That returns the unique rows of the table instead
of returning the count of how many unique values or combinations of values there
are.

In SQL, the opposite of DISTINCT is ALL. In fact, you can use the ALL keyword in both
of these places where you can use the DISTINCT keyword. But using the ALL
keyword does nothing because in both of these cases the default behavior when
you use no keyword is the same as what you get when you explicitly use the ALL
keyword. You can actually use the DISTINCT keyword with other aggregate
functions besides COUNT, but there is not usually any good reason to do that. For
example, there is usually no good reason to calculate the sum or the average of all
the unique values in a column. You can do this, but typically the result does not
answer any practical question. If you're using the MIN or MAX aggregate functions,
you should not use the DISTINCT keyword because the minimum or maximum of
the unique values is always the same as the minimum or maximum of all the values.

So the COUNT function is unique among the common aggregate functions because
it's the only one that is often used with the DISTINCT keyword. The COUNT function
is also the only one of these common aggregate functions that you'll often see used
with character string columns. You can't find the sum or average of a character
string column, those aggregate functions are for numeric columns. Although you
can find the min or max of a string column according to their lexicographical order,
it's not so common for data analysts to need to do that. But finding the count of
the values in a string column is something data analysts often need to do.

Tips for Applying Grouping and Aggregation

SHORTCUTS FOR GROUPING

This reading describes two techniques you can use to save time and make your
SQL queries more concise when you’re using the GROUP BY clause.
For example, consider this query from the “Tips for Applying Grouping and
Aggregation” video:
SELECT MIN(dep_time), MAX(dep_time), COUNT(*)
 FROM flights
 GROUP BY CASE WHEN dep_time IS NULL then 'missing'
 WHEN dep_time < 500 then 'night'
 WHEN dep_time < 1200 THEN 'morning'
 WHEN dep_time < 1700 THEN 'afternoon'
 WHEN dep_time < 2200 THEN 'evening'
 ELSE 'night'
 END;
Note that this query doesn’t actually include the grouping column in the output:
Results

min(dep_time) max(dep_time) count(*)

1200 1659 18366410

500 1159 24513240

NULL NULL 961944

1 2400 2067458

1700 2159 15483770

Instead it uses MIN(dep_time) and MAX(dep_time) as a way to indicate which of
these time bins reach row in the result set represents. This results in a curious
row that appears to encompass all values from 1 to 2400; this is actually the
group defined by WHEN dep_time < 500 then 'night' (including values
from 0 to 499) and the ELSE 'night' (including values from 2200 to 2400).
To include the grouping column in the output with Hive and some other SQL
engines, you would have to do this:
SELECT CASE WHEN dep_time IS NULL then 'missing'
 WHEN dep_time < 500 then 'night'
 WHEN dep_time < 1200 THEN 'morning'
 WHEN dep_time < 1700 THEN 'afternoon'
 WHEN dep_time < 2200 THEN 'evening'
 ELSE 'night'
 END AS dep_time_category,
 COUNT(*)

 FROM flights
 GROUP BY CASE WHEN dep_time IS NULL then 'missing'
 WHEN dep_time < 500 then 'night'
 WHEN dep_time < 1200 THEN 'morning'
 WHEN dep_time < 1700 THEN 'afternoon'
 WHEN dep_time < 2200 THEN 'evening'
 ELSE 'night'
 END;
Results

dep_time_category count(*)

afternoon 18366410

morning 24513240

missing 961944

night 2067458

evening 15483770

That gives a result that's more easily understood, but it's a long, repetitive query!
Using an Alias in the SELECT List
With Impala, MySQL, and PostgreSQL, you can use an alias in the SELECT list and
then refer to it in the GROUP BY clause. That is, you can use this query instead:
SELECT CASE WHEN dep_time IS NULL then 'missing'
 WHEN dep_time < 500 then 'night'
 WHEN dep_time < 1200 THEN 'morning'
 WHEN dep_time < 1700 THEN 'afternoon'
 WHEN dep_time < 2200 THEN 'evening'
 ELSE 'night'
 END AS dep_time_category,
 COUNT(*)
 FROM flights
 GROUP BY dep_time_category;
This produces the same results, but in a more concise query.
Using Positional References
Another way to do this with Impala, MySQL, PostgreSQL, and newer versions of
Hive (but not in older versions of Hive and not in some other SQL engines) is to
use an integer (1, 2, and so on) as the grouping expression, and the engine will
use the corresponding column in the SELECT list as the grouping column. If you

use GROUP BY 3, then the third column you specify in your SELECT list will be the
grouping column.
This means you could also use this query to get the same results for the departure
time category:
SELECT CASE WHEN dep_time IS NULL then 'missing'
 WHEN dep_time < 500 then 'night'
 WHEN dep_time < 1200 THEN 'morning'
 WHEN dep_time < 1700 THEN 'afternoon'
 WHEN dep_time < 2200 THEN 'evening'
 ELSE 'night'
 END AS dep_time_category,
 COUNT(*)
 FROM flights
 GROUP BY 1;
Since dep_time_category is the first column in the SELECT list, GROUP BY
1 directs the SQL engine to group by that column.

NOTE: In general, this shortcut method is less preferable, because it's harder to
see what your query does, and it could cause trouble if you changed
your SELECT list but forgot to change your ORDER BY clause.
Another Example
The tables in the fly database are not available to the MySQL and PostgreSQL
engines in the VM. If you want to test this on the VM using either of those
databases, you can try these queries:
Using an alias:
SELECT CASE
 WHEN price <= 10 THEN 'inexpensive'
 WHEN price > 10 THEN 'expensive'
 ELSE 'unknown'
 END AS price_category,
 COUNT(*)
 FROM inventory
 GROUP BY price_category;
Using positional reference:
SELECT CASE
 WHEN price <= 10 THEN 'inexpensive'
 WHEN price > 10 THEN 'expensive'

 ELSE 'unknown'
 END AS price_category,
 COUNT(*)
 FROM inventory
 GROUP BY 1;

HOW GROUPING AND AGGREGATION CAN MISLEAD

Care must be taken when grouping. It's possible to produce misleading results, or
even results that seem contradictory.

In the fly.flights table, if you compare average on-time
performance, AVG(arr_delay), over all flights for the carriers Virgin America
(carrier code VX) and SkyWest Airlines Inc. (carrier code OO), then SkyWest has a
better average delay (approximately 5.7 minutes) than Virgin (approximately 6.5
minutes). You might conclude, then, that Virgin is worse than SkyWest in terms of
delays, and when given a choice for a particular trip between two cities, choose
SkyWest.

However, Virgin would actually be a slightly better choice in that case (and if
arrival delay is your only criterion)! If you limit the data to the airports where both
airlines have flights, then Virgin looks slightly better than SkyWest (9.5 minutes
for Virgin and 9.7 minutes for SkyWest). It might not be a problem with Virgin
being worse than SkyWest, then, in terms of delays. Instead, the problem could
be with the airports where they operate. The airports where Virgin operates
overall have worse delays than the airports where SkyWest operates, so Virgin's
average on-time performance over all flights looks worse than SkyWest.

(Note: The queries for these comparisons require some techniques you haven't
learned yet, but they are included at the end of this reading in case you want to
try them.)

In this case, the airports is a confounding variable—an underlying variable that
affects each of the other variables that you are examining. The airports
themselves can be a source of delay (San Francisco often has delays on account of
fog, for example), and the carriers work with different airports. This underlying
variable makes a difference, so a good comparison needs to accommodate that
variable.

Another example is Simpson's Paradox, in which grouping in one way can provide
one conclusion for every single group, but when taken as a whole, the opposite
conclusion is reached. This is often because of a significant difference in sample
size for the groups. For example, a study of kidney stone treatment found that
while one treatment appeared to be more effective for both small stones and for
large stones, when you looked at all the cases together, the other treatment
appeared to be more effective. (See the Wikipedia page, Simpson's paradox, for
this and other examples. “Simpson's Paradox: How to Prove Opposite Arguments
with the Same Dataset” also explains this phenomenon well.)

 Treatment A Treatment B

Small stones Group 1 93% (81/87) Group 2 87% (234/270)

Large stones Group 3 73% (192/263) Group 4 69% (55/80)

Both 78% (273/350) 83% (289/350)

Notice that treatment A was provided about three times as much for large stones
as for small stones, while treatment B was provided about three times as much
for small stones as for large stones. The severity (size) of the stones is the
confounding variable.

To avoid making conclusions from misleading data, you might:

 Use different levels of aggregation, including the highest aggregation and
no aggregation at all, if possible, when looking at the data;

 Try different ways to group your data, to be sure your choice of groups isn't
causing an effect that disappears or reverses for different choices; and

 Include counts in your results so you can see when one group has a
significantly different number of contributions than others.

QUERIES USED TO COMPARE CARRIERS

These queries use some techniques you haven't learned yet, but they are included
here in case you want to try them.

Comparing Virgin to SkyWest, all flights:

SELECT carrier, AVG(arr_delay), COUNT(arr_delay)

 FROM flights WHERE carrier='VX' OR carrier='OO'

 GROUP BY carrier ORDER BY avg(arr_delay);

carrier avg(arr_delay) count(arr_delay)

OO 5.685446716780021 5926697

VX 6.484657383617123 367408

 Comparing Virgin to SkyWest, identical origins and destinations:

SELECT f.carrier, avg(f.arr_delay), count(f.arr_delay)

 FROM flights f

 JOIN

 (SELECT DISTINCT origin, dest FROM flights WHERE carrier='VX') vx

 ON (f.origin=vx.origin AND f.dest=vx.dest)

 JOIN

 (SELECT DISTINCT origin, dest FROM flights WHERE carrier='OO') oo

 ON (f.origin=oo.origin AND f.dest=oo.dest)

 WHERE carrier='VX' OR carrier='OO'

 GROUP BY f.carrier ORDER BY avg(f.arr_delay);

Note that this query uses the JOIN keyword to combine tables; you'll learn about
this in Week 6 of this course. It also uses subqueries to isolate the
origin/destination pairs for each carrier; you'll learn about subqueries if you
continue to the fourth course in this specialization.

carrier avg(f.arr_delay) count(f.arr_delay)

OO 9.72568710815216 231914

carrier avg(f.arr_delay) count(f.arr_delay)

VX 9.546630527151848 180043

THE HAVING CLAUSE

Two of the techniques you've learned about so far in this course are filtering data
using the WHERE clause and grouping and aggregating data using the GROUP BY
clause and aggregate expressions. Equipped with your knowledge of these two
techniques, you might try to use an aggregate expression in the WHERE clause to
filter the results by an aggregate column. However, this does not work. Here's an
example to demonstrate this. First, this query which is valid, it does work., it groups
the inventory table by shop and returns the name of each shop and the sum of the
prices of all the copies of the game in each shop. That is, the sum of the price of
each game times the quantity in stock. So the results set has two rows representing
the two shops. The second column in the results set gives the sum of price times
quantity for the games in each shop. In other words, the total retail value of the
games in each shop.

Now, say you wanted to filter these results to return only the shops that have an
inventory with a total retail value greater than $300. You might try to do this by
adding the clause where sum of price times quantity, greater than 300. But this
query will fail in all major SQL engines. This query fails because the WHERE clause
can only filter individual rows of data. You cannot use the WHERE clause to filter
based on aggregates of the data. Also, SQL engines process the WHERE clause
before the GROUP BY clause.

So when the WHERE clause is processed, the SQL engine doesn't yet know what
groups the data has been split into, because that splitting hasn't happened yet. So
there is a strict rule in SQL that you cannot use aggregate expressions in the WHERE
clause. So how can you write a select statement that filters based on aggregates?
Since you cannot use the WHERE clause to do this, SQL has a different Clause for
this. The HAVING clause. You learn how to use this clause next. Filtering on Aggregates

DISCUSSION PROMPT: THE ANALYTIC JOURNEY

Most of the problems you get in this course have clear solutions—you run the
query, answer the question, and you’re done. In real life, it's rarely so clear or
simple. You might find a strange result and wonder what's causing it, then write
and execute many more queries to try to find the root of the strange result. Data
analysis is often more about exploring data than getting simple reports.

In the final In-Video Question of the “The HAVING Clause” video, you should have
seen a calculation for average flight speed of two flights from MCO to JAX that
couldn't possibly be correct. It gave the average speed as 1251.25 miles per hour,
which is well over Mach 1 (the speed of sound) and getting close to Mach 2 (twice
the speed of sound).

Dig into this mystery. Try to solve it on your own, and then come back here to see
how others approached it. Contribute your own approach, thoughts, and results.
If the mystery hasn't yet been solved, collaborate with your peers! Ask questions
and get ideas on what to look for or what to try.
Participation is optional

WORKING WITH DIFFERENT VERSIONS OF HUE, HIVE, AND IMPALA

In the videos in this honor's lesson, you'll learn some tips for working in some
different versions of Hive, Impala, and Hue. When you're working as a data analyst
in the real world, it's important to be able to adapt to different versions of these
tools. The VM that you've been using for this course has specific versions of Hive
and Impala and Hue installed on it. But a company or organization you're working
for might use different version. Also, if you're interested in taking the Cloudera
Certified Associate Data Analyst certification exam, the exact versions of Hive,
Impala and Hue that you'll need to use to complete that exam might not match the
versions on this course VM.

So you'll need to be prepared to deal with different versions. In this video, I'll
discuss Hive and Impala, then in the next video, I'll talk about Hue. Over time,
additional capabilities have been added to Hive and Impala, and some of the
default behaviors have changed. So if you're using a new or unfamiliar instance of
Hive and Impala, or if there might have been a version update on the instance
you're using, it's good to check what the version is. To see exactly what version of
hive or Impala you're using, run the SQL statement, SELECT version();. Version is a
special built-in function that returns a character string containing version

information. When you run SELECT version, that returns a result with a single row
and a single column containing that character string. The most important part to
look for is the first set of numbers that appears in that string.

For example, 2.10.0 for Impala, or 1.1.0 for Hive. If you're using a version of Hive or
Impala that was distributed by Cloudera, then you'll also see a Cloudera platform
version number after cdh. In both of the examples shown here, their Cloudera
platform version is 5.13.0. After those numbers, you might also see some build
information but you can usually ignore that. The examples here show the output
when you use this version function in Hive and Impala, but you can use the version
function with many other SQL engines to including MySQL and PostgreSQL. Once
you know what version of Hive or Impala you're using, the best way to get detailed
information about that version is to review the documentation. For Hive, you can
find the documentation by going to hive.apache.org and clicking the link for
language manual.

For Impala, you can go to impala.apache.org and click the link for documentation.
However for Impala, if you're using a version that was distributed by Cloudera, it's
easier to use the Impala documentation that's hosted on Cloudera's website. To
access that, follow the provided link. I'll first show the Hive LanguageManual and
demonstrate how you can find version specific information there. The Hive
LanguageManual is structured as a wiki that members of the hive developer and
user communities can contribute to. From the main LanguageManual page, you can
click to access subpages. Under Data Retrieval Queries, I'll click the link for Select.

And here, you can see that there are many details about the syntax of the select
statement in HiveQL, which is the name for Hive's dialect of SQL. Interspersed
throughout this content, you will see references to changes that occurred in
different versions of Hive. For example, under the heading ALL and DISTINCT
Clauses, there is a note that says, Hive supports SELECT DISTINCT star starting in
release 1.1.0. You might recall that a SELECT DISTINCT star query returned the
distinct full rows in a table. Hive versions earlier than 1.1.0 did not support this. The
version on the course VM that you've been using is 1.1.0 or later so it does support
this. Often, you can get additional information about a feature that was added to
Hive by clicking a link included in the note.

This takes you to the Apache Hive issue tracking system. There is often lots of
technical information included here that's beyond the scope of this course, but it
can be helpful to read the title and description fields. And to check the fix version,
which tells you what version of Hive first had this feature. One page in the Hive
LanguageManual that is especially useful to consult for version information is the
Operators and User-Defined Functions or UDFs page. The title of this page is a bit
confusing, with Hive when people use the term User-Defined Function or UDF, this
often encompasses built-in functions. On this page, there are sections listing the
different types of operators and built-in functions available in Hive.

For example, there's a section listing Hive's conditional functions. I'll click the link
to go to that section. In the description field for some of these functions, you'll see
notes indicating the version of Hive in which the function was first included. For
example, the nullif function was added in Hive version 2.3.0. So if the version of
Hive you're using is 2.3.0 or higher, then the nullif function is available. Otherwise,
it's not available. If you're using a version of Hive that was distributed by Cloudera,
there are some cases where the Cloudera engineers make a new feature or function
available early.

So it's a good idea to test the feature or the function yourself on the version of Hive
you're using to verify that it's consistent with what the hive documentation says.
Now, I'll show how to use the Impala documentation that's hosted on Cloudera's
website. There are many different sections of Cloudera's Impala documentation.
But I'll focus here on the Impala sequel language reference which you can get to by
following the provided link. From this main page, you can click to access subpages.
I'll click to go to the page for built-in function. Here you can see further subpages
for the different categories of built-in functions.

 I'll click to go to the Impala Conditional Functions page. Impala and Hive have many
of the same built-in functions, but there are some differences. So the least of
functions here does not exactly match the list I showed in the Hive documentation.
In the descriptions of many of the functions here, there are notes indicating what
version of Impala the function was added in. For example, the nullif function was
added to Impala in version 1.3.0. In some of the notes, you'll also see a Cloudera
platform version number which begins with CDH. That's because recent versions of
Impala are bundled with specific versions of the Cloudera platform. And it's
sometimes more convenient to use this Cloudera platform version number.

If you know which version of the Cloudera platform you're using, in other words
which CDH version you're using, then there is a trick that can help you navigate the
Impala documentation. In the URL for all of the Impala documentation pages, you
should see the word latest. This means that you're viewing the documentation for
the most recent version of the Cloudera platform. You can see the specific version
number this corresponds to at the top of the page. In the URL, you can replace the
word latest with a specific CDH version number to see the Impala documentation
for that specific version of the Cloudera platform.

But you need to format the version number a certain way. You use dashes instead
of dots and change the final digit to an x. For example, if you're using version 5.13.0
of the Cloudera platform, then you can replace latest with 5-13-x. After making that
change to the URL, I'll press Enter. And now, I'm viewing a different version of the
Impala documentation that specifically describes the version of Impala that's
bundled with the 5.13 versions of the Cloudera platform. I recommend using this
trick whenever you're using Impala on a specific version of the Cloudera platform
that's not the latest version.

By using the Hive and Impala documentation in the ways I described in this video,
you should be able to resolve most questions about what features are available in
what versions of Hive and Impala. As you browse the documentation, you'll notice
there is a lot of information there about topics that you have not yet learned about
in this course. If you see something in the documentation that you don't
understand, it's okay to just ignore it for now. We'll cover many of these topics later
in this course and in the other course as they're part of this specialization.

UNDERSTANDING HIVE AND IMPALA VERSION DIFFERENCES

In the videos in this honor's lesson, you'll learn some tips for working in some
different versions of Hive, Impala, and Hue. When you're working as a data
analyst in the real world, it's important to be able to adapt to different versions of
these tools. The VM that you've been using for this course has specific versions of
Hive and Impala and Hue installed on it. But a company or organization you're
working for might use different version. Also, if you're interested in taking the
Cloudera Certified Associate Data Analyst certification exam, the exact versions of

Hive, Impala and Hue that you'll need to use to complete that exam might not
match the versions on this course VM.

So you'll need to be prepared to deal with different versions. In this video, I'll
discuss Hive and Impala, then in the next video, I'll talk about Hue. Over time,
additional capabilities have been added to Hive and Impala, and some of the
default behaviors have changed. So if you're using a new or unfamiliar instance of
Hive and Impala, or if there might have been a version update on the instance
you're using, it's good to check what the version is. To see exactly what version of
hive or Impala you're using, run the SQL statement, SELECT version();. Version is a
special built-in function that returns a character string containing version
information. When you run SELECT version, that returns a result with a single row
and a single column containing that character string. The most important part to
look for is the first set of numbers that appears in that string. For example, 2.10.0
for Impala, or 1.1.0 for Hive. If you're using a version of Hive or Impala that was
distributed by Cloudera, then you'll also see a Cloudera platform version number
after cdh. In both of the examples shown here, their Cloudera platform version is
5.13.0. After those numbers, you might also see some build information but you
can usually ignore that. The examples here show the output when you use this
version function in Hive and Impala, but you can use the version function with
many other SQL engines to including MySQL and PostgreSQL.

Once you know what version of Hive or Impala you're using, the best way to get
detailed information about that version is to review the documentation. For Hive,
you can find the documentation by going to hive.apache.org and clicking the link
for language manual. For Impala, you can go to impala.apache.org and click the
link for documentation. However for Impala, if you're using a version that was
distributed by Cloudera, it's easier to use the Impala documentation that's hosted
on Cloudera's website. To access that, follow the provided link.

I'll first show the Hive LanguageManual and demonstrate how you can find
version specific information there. The Hive LanguageManual is structured as a
wiki that members of the hive developer and user communities can contribute to.
From the main LanguageManual page, you can click to access subpages. Under
Data Retrieval Queries, I'll click the link for Select. And here, you can see that
there are many details about the syntax of the select statement in HiveQL, which
is the name for Hive's dialect of SQL. Interspersed throughout this content, you

will see references to changes that occurred in different versions of Hive. For
example, under the heading ALL and DISTINCT Clauses, there is a note that says,
Hive supports SELECT DISTINCT star starting in release 1.1.0.

You might recall that a SELECT DISTINCT star query returned the distinct full rows
in a table. Hive versions earlier than 1.1.0 did not support this. The version on the
course VM that you've been using is 1.1.0 or later so it does support this. Often,
you can get additional information about a feature that was added to Hive by
clicking a link included in the note. This takes you to the Apache Hive issue
tracking system. There is often lots of technical information included here that's
beyond the scope of this course, but it can be helpful to read the title and
description fields. And to check the fix version, which tells you what version of
Hive first had this feature. One page in the Hive LanguageManual that is especially
useful to consult for version information is the Operators and User-Defined
Functions or UDFs page.

The title of this page is a bit confusing, with Hive when people use the term User-
Defined Function or UDF, this often encompasses built-in functions. On this page,
there are sections listing the different types of operators and built-in functions
available in Hive. For example, there's a section listing Hive's conditional
functions. I'll click the link to go to that section. In the description field for some
of these functions, you'll see notes indicating the version of Hive in which the
function was first included. For example, the nullif function was added in Hive
version 2.3.0. So if the version of Hive you're using is 2.3.0 or higher, then the
nullif function is available. Otherwise, it's not available. If you're using a version of
Hive that was distributed by Cloudera, there are some cases where the Cloudera
engineers make a new feature or function available early.

So it's a good idea to test the feature or the function yourself on the version of
Hive you're using to verify that it's consistent with what the hive documentation
says. Now, I'll show how to use the Impala documentation that's hosted on
Cloudera's website. There are many different sections of Cloudera's Impala
documentation. But I'll focus here on the Impala sequel language reference which
you can get to by following the provided link. From this main page, you can click
to access subpages.

I'll click to go to the page for built-in function. Here you can see further subpages
for the different categories of built-in functions. I'll click to go to the Impala
Conditional Functions page. Impala and Hive have many of the same built-in
functions, but there are some differences. So the least of functions here does not
exactly match the list I showed in the Hive documentation. In the descriptions of
many of the functions here, there are notes indicating what version of Impala the
function was added in.

For example, the nullif function was added to Impala in version 1.3.0. In some of
the notes, you'll also see a Cloudera platform version number which begins with
CDH. That's because recent versions of Impala are bundled with specific versions
of the Cloudera platform. And it's sometimes more convenient to use this
Cloudera platform version number. If you know which version of the Cloudera
platform you're using, in other words which CDH version you're using, then there
is a trick that can help you navigate the Impala documentation. In the URL for all
of the Impala documentation pages, you should see the word latest.

This means that you're viewing the documentation for the most recent version of
the Cloudera platform. You can see the specific version number this corresponds
to at the top of the page. In the URL, you can replace the word latest with a
specific CDH version number to see the Impala documentation for that specific
version of the Cloudera platform. But you need to format the version number a
certain way. You use dashes instead of dots and change the final digit to an x. For
example, if you're using version 5.13.0 of the Cloudera platform, then you can
replace latest with 5-13-x. After making that change to the URL, I'll press Enter.
And now, I'm viewing a different version of the Impala documentation that
specifically describes the version of Impala that's bundled with the 5.13 versions
of the Cloudera platform.

I recommend using this trick whenever you're using Impala on a specific version
of the Cloudera platform that's not the latest version. By using the Hive and
Impala documentation in the ways I described in this video, you should be able to
resolve most questions about what features are available in what versions of Hive
and Impala. As you browse the documentation, you'll notice there is a lot of
information there about topics that you have not yet learned about in this course.
If you see something in the documentation that you don't understand, it's okay to

just ignore it for now. We'll cover many of these topics later in this course and in
the other course as they're part of this specialization.

UNDERSTANDING HUE VERSION DIFFERENCES

[BLANK AUDIO] In this brief video, I'll help orient you to some Version Differences
you might encounter when using Hue. On the VM for this course, when you open
Hue in the web browser, the user interface that you see is the Hue version 4 user
interface. This version 4 interface was introduced fairly recently. So in other
environments, you might still encounter the older Hue version 3 interface. The
Hue 3 interface looks a little different, and some of the menus and links are in
different places. For example, to access the Table Browser in Hue 3, you open the
Data Browsers menu in the top bar, and click Metastore Tables.

This takes you to the Metastore Manager, which is essentially the same as the
Table Browser in Hue 4. And to access the Query Editors in Hue 3, you open the
Query Editors menu in the top bar, and click Hive or Impala. In the Query Editors,
things work mostly the same as in Hue 4. You can use the assist panel on the left
side to browse databases and tables, you can use the active database selector on
the upper right.

And you can write and run queries, and view the results. All just like you can in
Hue 4. So if you encounter the Hue version 3 interface, try not to get disoriented.
Remember that it enables the same actions that you've been doing in the Hue 4
interface, browsing tables and querying with Hive and Impala. Once you
familiarize yourself with its different appearance and the different locations of the
menus and links, you should have no trouble using it.

WEEK 5

LEARNING OBJECTIVES

 Sort results using ORDER BY in circumstances for which sorted data is
needed

 Apply the LIMIT clause in appropriate circumstances
 Identify which parts of the SELECT statement are processed before others
 (Honors) Use documentation as a reference to get details on available

capabilities

THE ORDER BY CLAUSE

When you're writing a select statement and you want the rows of your results set
to be in a specific order, you use the Order By Clause. The order by clause takes
the result from all the earlier clauses, select, from, where, and to group by, and it
arranges those rows, sorts them in a specific order before returning them to you.
I'll demonstrate this with an example but first, recall that when you run a select
statement with a distributed SQL engine, if the statement does not have an order
by clause, then the order of the rows in the results set is arbitrary and
unpredictable.

You could run the exact same query twice on the same data and you could get the
rows in a different order each time. On the VM for this course, you will probably
not experience this unpredictability of row order to its full extent. On the VM, the
distributed SQL engines and the tables they're querying are not actually
distributed across multiple computers. They're all just on one computer and this
takes away much of the randomness that causes the rows to get shuffled around.
Especially, when you're querying the very small tables like this one. So you might
forget and start to expect that the rows will always come back in the same order
each time. Don't let that happen.

Remember, row order is arbitrary and unpredictable. Unless you explicitly tell the
SQL engine to return the rows in a specific order, there's no way to know for sure
what order they'll come back in. If you want the rows of your results set to be in a
specific order, the way to tell the SQL engine that is to use an order by clause. For
example, to return the rows of the games table ordered by the ID column, you

would add the clause order by ID to the end of the select statement. Then the
rows of the results that are guaranteed to be in this specific order, ID one, two,
three, four, five from top to bottom. You can use any column in the order by
clause. For example, you can order by list price.

This arranges the rows of the result set according to the values in the list price
column with the least expensive game in the top row and the most expensive
game in the bottom row, or you can order by max players. But when you do that,
notice that there are some rows that have the same max player's values. Both
Scrabble and Candy Land have max players four and both monopoly and clue
have max players six. When there are ties like this in the column that you order
by, then within the sets of rows where those values are tied, the order of those
rows is arbitrary. So you might get Scrabble first then Candy Land or Candy Land
first then Scrabble, and the same with Monopoly and Clue, they could be in either
order. You can include more than one column reference in an order by clause.
Here's an example to demonstrate that.

The order by clause in this example has two column references. First, max players
and second, list price. So the results set is ordered first by max players then by list
price. What this means is that when there are ties in the first sorting column, then
the ties are broken using the values in the second column. If you look at the first
two rows of the results that they both have the same value of max players, four.
So the order of these heroes is determined by list price. So you can specify one or
two or even more than two column references in the order by clause. If you have
two or more, then you separate them by commas and this comma separated list
in the order by clause is called the order by list. You can use the order by clause
together in a select statement with other clauses where group by and having, but
it must come after those clauses. Here's an example to demonstrate the order by
clause with some of these other clauses.

This select statement queries the inventory table, filters out the rows that have a
null in the price column, groups by Shop and then returns the name of each shop
and the sum of the quantity of games in stock at that shop. Finally, it orders by
the shop column. The shop column is a character string column not a numeric
column like in the other examples. So what the order by clause does is it arranges
the rows of the results that in alphabetical order by shop. Since B comes before D
in the alphabet, Board 'Em is first and Dicey is second.

INTRODUCTION TO THE ORDER BY CLAUSE

Controlling Sort Order

When you use an ORDER BY clause in a query, the SQL engine returns the rows in
order by the column or columns that you specify. The order they're returned in by
default is ascending order. Ascending means from smallest to largest. Smallest at
the top, largest at the bottom. Or if you're ordering by a string column, then
ascending means in alphabetical order from A to Z. Here's an example using a
numeric column. When you run the query, SELECT * FROM games ORDER BY
list_price, then in the result set, the least expensive game is in the first row at the
top and the most expensive game is in the last row at the bottom. But sometimes
you'll want the rows to be arranged in the opposite order, with the largest values
at the top and the smallest at the bottom. This is called descending order.

For a string column, descending order is reversed alphabetical order, from Z to A.
In SQL, you can arrange rows in descending order by using the keyword DESC in
the ORDER BY clause. This keyword goes after the column reference. So, in this
example, it's ORDER BY list_price DESC. When I use this DESC keyword, I'll speak it
as descending. That's how most people say it. So, for this example, I would say
order by list price descending, but the actual keyword is DESC. You can also use
the keyword ASC for ascending. But since ascending is the default sort order, this
keyword has no effect. So ORDER BY list_price ASC does the same thing as just
ORDER BY list_price. But sometimes it's helpful to include this ASC keyword just to
make the sort order abundantly clear. When you use multiple column references
in an ORDER BY clause, you specify ascending or descending order separately for
each one. Each keyword ASC or DESC only applies to the one column reference it's
used with.

The query in this example arranges the results in descending order by
max_players, then in ascending order by list_price. So the rows with the largest
values of max_players are at the top and then within the sets of rows in which
max_players are tied, the smallest values of list_price come first. And of course,
remember that you could leave off the ASC keyword here, and you would get the
same result because the default sort order for each column is ascending. But in
this kind of case, where you're sorting on multiple columns, some ascending,
some descending, it's helpful to include the ASC keyword for clarity. There is an

important point I want to clarify about sort order when you're using HUE. In the
HUE query editors, if you run a query that returns a result with more than 100
rows, only 100 rows are initially returned and displayed. The demonstrate this, I'll
run the query SELECT * FROM flights. The flights table has tens of millions of rows,
but when I run this query, HUE only displays 100 rows. If I scroll down to the
bottom of the page, HUE will load and display 100 more rows. I could scroll down
again to load more rows. When I scroll back up to the top, and move the cursor
over one of the column headers, you can see that there are grayed out up and
down arrow icons visible there.

If I click the header once, HUE sorts the displayed results by the values in that
column in ascending order. If I click a second time, it sorts in descending order,
and if I click a third time, it returns the results to the original order, with no
sorting applied. What's happening here is that HUE is sorting only the portion of
the results that are displayed. HUE is not sorting the full result set. If you
mistakenly think that HUE is sorting the full result set, you could easily
misinterpret the data. For example, when you sort in ascending order, you might
mistakenly think that the value shown in the top row is the minimum value in this
column for the whole data set. And when you sort in descending order, you might
mistakenly think that the value shown in the top row is the maximum value. But
you would be wrong because these are only the minimum and maximum values
within this arbitrary subset of the rows that's displayed in HUE.

So I recommend not using this sort feature in HUE unless you are sure that the
results that are displayed are the entire result set, not just a subset. This issue is
not unique to HUE. There some other SQL clients and BI applications that have
table viewer interfaces like this with similar controls that might mislead you in a
similar way. So whenever you're using software that displays a subset of your
query results, keep in mind that the controls or functions for sorting the rows
might only be sorting that subset, not the full result set.

ORDERING EXPRESSIONS

Recall that the list of column references that comes after the keywords ORDER BY
is called the ORDER BY list. This list can have just one column reference, or it can
have two or more column references, separated by commas. The ORDER BY list
can also have expressions. Here's an example with an ORDER BY list that consists
of one expression. This expression is a little bit complicated but what it does is it
computes the saturation of the colors in the crayons table. Saturation is a decimal
number between 0 and 1, representing how intensely colorful a color is. White
and black have a saturation of 0, the flashiest colors have a saturation close to 1.

So this expression computes the saturation of each color in the crayons table. And
since the expression is used in the ORDER BY clause, the SQL engine arranges by
rows of the result set according to saturation. It arranges then in descending
order with the most saturated colors at the top. However, the result set from this
query does not include a column showing the saturation values. That's because
the expression that computes saturation is used only in the ORDER BY clause, not
in the SELECT list. Fortunately, most SQL engines allow you to use an expression in
the SELECT list, give it a column alias, and then use that column alias in the ORDER
BY clause. So here I modified the query.

I took the expression for computing saturation, I moved it into the SELECT list
after all the other columns and I gave it the alias saturation. And then I specified
ORDER BY saturation descending. The results of this query is arranged in
descending order by saturation. And it includes the saturation values in the
rightmost column. You can see the crayon color with the highest saturation value
is Electric Lime. These examples used just one expression, or column alias, in the
ORDER BY list. But you can use two or more, separated by commas. You can use
any mix of column references, expressions, and column aliases. And you can
specify ascending or descending order, separately, for each one.

ORDERING BY STRING COLUMNS

You can control the sort order of SQL query results using the ORDER BY clause.

When sorting on a numeric column, the resulting order typically makes intuitive

sense, but when sorting on a string column, you might be surprised by the

resulting order. This is especially true when the strings include numbers, or a mix

of numbers and letters or other characters within a value.

Unfortunately, there isn't a simple explanation to tell you how SQL will sort your

results, because it depends on what collation you are using.

A DBMS uses a collating sequence, or collation, to determine the order in

which characters are sorted. The collation defines the order of precedence for

every character in your character set. Your character set depends on the

language that you’re using—European languages (a Latin character set), Hebrew

(the Hebrew alphabet), or Chinese (ideographs), for example. The collation also

determines case sensitivity (is ‘A’ < ‘a’?), accent sensitivity (is ‘A’ < ‘À’ ?), width

sensitivity (for multibyte or Unicode characters), and other factors such as

linguistic practices. The SQL standard doesn’t define particular collations and

character sets, so each DBMS uses its own sorting strategy and default collation…

Search your DBMS documentation for collation or sort order. (1)

Collations have different options associated with them, and many can be

customized depending on the system you are using. For English, case

sensitivity is a major one to consider—should "A" and "a" be considered the

same character for the purposes of ordering? Others include accent

sensitivity (for example, should "a" and "á" be considered the same), Kana

sensitivity (which distinguishes between the two types of Japanese characters),

and script order (for example, which should be ordered first: Hebrew, Greek, or

Cyrillic). See "Customization" (2) and "Collation" (3) for more examples of these

and other options.

When using Unicode—an industry standard that assigns a number to each

character or symbol— SQL will most likely follow the Unicode ordering to

distinguish the order of two characters, while taking customizations into account.

Non-Unicode data may have a different order:

http://unicode.org/reports/tr10/#Customization
https://docs.microsoft.com/en-us/sql/relational-databases/collations/collation-and-unicode-support?view=sql-server-2017#Collation_Defn
http://unicode.org/standard/WhatIsUnicode.html

When you use a SQL collation you might see different results for comparisons of

the same characters, depending on the underlying data type. For example, if you

are using the SQL collation "SQL_Latin1_General_CP1_CI_AS", the non-Unicode

string 'a-c' is less than the string 'ab' because the hyphen ("-") is sorted as a

separate character that comes before "b". However, if you convert these strings

to Unicode and you perform the same comparison, the Unicode string N'a-c' is

considered to be greater than N'ab' because the Unicode sorting rules use a

"word sort" that ignores the hyphen. (4)

When it comes to numbers represented within strings, you must remember than

string sorting is done on a character-by-character basis. For example:

'42' <

'71'

This compares only the first characters: '4'<'7'. The order is now

established and any other remaining characters can be ignored.

'42' <

'45'

The first characters are the same, '4' = '4', so the sort then compares the

next characters, '2'<'5'. So '42' < '45'.

'42' <

'7'

Although numerically 42 > 7, the sort compares the first characters, '4' and

'7'. Since '4' < '7', the order is established and any other remaining

characters are ignored. For this string sort, '42' < '7'.

You can sometimes find ways to customize the sort, when necessary. For

example, "Use SQL Server to Sort Alphanumeric Values" (5) provides a method,

usable with Microsoft SQL Server, to sort values with a mixture of letters and

numerals that would consider '7' < '42'.

Spaces, especially leading spaces, often cause confusion as well. The space

character is typically considered to come before any number or letter, and some

punctuation as well. Again, sort order is done character by character. For

example:

'no one' <

'nobody'

The first characters are equivalent, 'n' = 'n', so the sort would move

to the second characters. These are also equivalent, 'o' = 'o', so the

sort moves to the third characters. These are ' ' and 'b', and ' ' < 'b',

so 'no one' < 'nobody'.

https://www.essentialsql.com/use-sql-server-to-sort-alphanumeric-values/

' start' <

'begin'

Notice that the first character in the string on the left is a space.

While 'begin' < 'start' because 'b' < 's', these string sort as ' start' <

'begin' because ' ' < 'b'.

For more detail on these points, see the referenced articles.

(1) Fehily, Chris. SQL VIsual QuickStart Guide, 3rd Edition.Retrieved

from http://www.peachpit.com/articles/article.aspx?p=1276352&seqNum=4 on

May 25, 2018.

(2) Unicode® Technical Standard #10: Unicode Collation Algorithm. Retrieved

from http://unicode.org/reports/tr10/#Customization on May 25, 2018.

(3) Collation and Unicode Support. Retrieved

from https://docs.microsoft.com/en-us/sql/relational-

databases/collations/collation-and-unicode-support?view=sql-server-

2017#Collation_Defn on May 25, 2018.

(4) Comparing SQL collations to Windows collations. Retrieved

from https://support.microsoft.com/en-us/help/322112/comparing-sql-

collations-to-windows-collations on May 25, 2018.

(5) Use SQL Server to Sort Alphanumeric Values. Retrieved

from https://www.essentialsql.com/use-sql-server-to-sort-alphanumeric-values/

on May 25, 2018.

MISSING VALUES IN ORDERED RESULTS

Recall that when you use an order by clause to sort your results in a descending
order by sum column, then the rows with the lowest values in that column will be
at the top of the results. If you sort in descending order, then the rows with the
highest values will be at the top. As a data analyst, you'll often use the order by
clause for exactly this purpose, to get the lowest or highest values at the very top
of your result. This is what you do to identify the worst, or the best, or the
smallest, or the biggest of whatever your data represents. But there is something
they can prevent this from working as expected, and that is when the column that
you're ordering by contains null values. Different SQL engines handle null values

http://www.peachpit.com/articles/article.aspx?p=1276352&seqNum=4
http://unicode.org/reports/tr10/#Customization
https://docs.microsoft.com/en-us/sql/relational-databases/collations/collation-and-unicode-support?view=sql-server-2017#Collation_Defn
https://docs.microsoft.com/en-us/sql/relational-databases/collations/collation-and-unicode-support?view=sql-server-2017#Collation_Defn
https://docs.microsoft.com/en-us/sql/relational-databases/collations/collation-and-unicode-support?view=sql-server-2017#Collation_Defn
https://support.microsoft.com/en-us/help/322112/comparing-sql-collations-to-windows-collations
https://support.microsoft.com/en-us/help/322112/comparing-sql-collations-to-windows-collations
https://www.essentialsql.com/use-sql-server-to-sort-alphanumeric-values/

in ordering columns in different ways. In Impala and PostgreSQL, nulls sort as if
they are higher than any non null value.

In other words, these SQL engines put the nulls at the bottom of the results when
you sort in ascending order, and at the top when you sort in descending order. So
for example, the query shown here sorts the results from the inventory table by
the price column in ascending order, that's the default sort order. When you run
this query in Impala or PostgreSQL, the row with the null price is at the bottom of
the results. But if you add the DESC keyword to sort in descending order by price,
then the row with the null price is at the top of the results. That's how Impala and
PostgreSQL work, but Hive and MySQL do exactly the opposite.

In Hive and MySQL, nulls sort as if they are lower than any non null value. In other
words, these SQL engines put the nulls at the top when you sort in ascending
order, and at the bottom when you sort in descending order. So if you sort by
price in ascending order with Hive or MySQL, the row with the null price is at the
top of the results, and if you sort in descending order, then the null prices at the
bottom. So if there are null values in the column or columns you're ordering by,
you should always remember to consider where the SQL engine you're using will
put them in the results. With some SQL engines, there is a way to explicitly
control how the order by clause handles null values.

You can do this by using the keywords nulls first or nulls last in the order by
clause. I'll use an example to demonstrate how this works. Recall that Impala and
PostgreSQL put the nulls at the bottom of the results when you sort in ascending
order. So if you sort the inventory table by price in ascending order, then the row
with the null price is at the bottom. To make that row with the null price appear
at the top of your results set, you can add the keywords NULLS FIRST after the
column reference in the order by clause. So it's order by price, NULLS FIRST.

When you use multiple column references in an order by clause, you specify the
keywords nulls first or nulls last separately for each column. These keywords
come after the ASC or DESC keywords if you use them. So for example, this query
uses the clause ORDER BY aisle descending NULLS LAST, price ascending NULLS
FIRST. With this example Impala and PostgreSQL would sort the results differently

if you had left off the nulls last or the nulls first. Note that regardless of whether
you sort in ascending or descending order, the keywords nulls first and nulls last
will do exactly what they sound like they do. They'll put the nulls first or last in the
ordering. Using the nulls first and nulls last keywords won't necessarily change the
order of your results. For example, with Impala or PostgreSQL using nulls first
after a descending will have no effect because the SQL engines already put the
nulls first by default when you sort in descending order.

Not all SQL engines support these keywords nulls first and nulls last. Impala and
PostgreDSQL do, but MySQL does not and only newer versions of Hive do. You can
try it out with the SQL engine that you're using to see if it works. In the SQL
engines like MySQL and older versions of Hive that do not support this syntax, you
can use a trick to achieve the same result. The trick is to order by the Boolean
expression, column name is null, then order by the column itself. For example,
Hive and MySQL both put the row with the null price first in the top row when
you sort by price in ascending order.

But you can make them put it last in the bottom row by ordering first by price is
null ascending, then ordering by price. Then the result has the null price in the
bottom row. This works because price is null is a column of Boolean values, true
and false values. When you sort Boolean values in ascending order, false comes
before true. So the rows in which prices null is true and up at the bottom. Another
option when you're working with data that has null values in the ordering
columns is simply to remove the rows that contain those null values using the
where clause or the having clause. In many cases, that's the easiest thing to do,
but you should always be careful about removing rows with null values, because
you could end up censoring meaningful parts of the data in ways that could
dramatically changed the outcome of your results or your analysis. So anytime
you're tempted to just remove the nulls from a dataset, always stop and think
first about whether this could make your results incomplete or misleading.

USING ORDER BY WITH HIVE AND IMPALA

In this video, I'll describe a limitation that you need to know about when using the
ORDER BY clause with Hive, a shortcut for specifying the ORDER BY clause with
Impala, and some general advice for using ORDER BY with engines like Hive and

Impala. First the Hive limitation. With Hive when you want to order by a specific
column, that column must be included in the result set. So for example, the query
shown here gives an error when you try to run it with Hive, because it's ordering
by list price, but list price is not one of the columns that's specified in the select
list. To resolve this error, you need to either add the list price column to the select
list or use select star. So all the columns including list price are returned. Both of
these queries run without error in Hive.

You'll also encounter this limitation if you try to use an expression in the ORDER
BY clause that has one or more column references in it. Like in this example with
order by quantity times price. This gives the same type of error if you try to run it
in Hive. Once again, to resolve the error, you'll need to include those columns
quantity and price in the select list or you select star. As long as you do this, the
select list doesn't need to include the expression itself. Or with expressions,
another option is to use the expression in the select list give it a column alias and
then use that column alias in the ORDER BY clause. Because recall that most SQL
engines allow you to use a column alias in the ORDER BY clause. With Hive that
method works and it gets around this limitation. This limitation only affects Hive
not Impala and not most other SQL engines.

Now I'll describe a shortcut for specifying the ORDER BY clause with Impala. With
Impala, you can specify which columns to order by using position numbers. These
are integers starting from one that refer to columns in the results set by their
position. Here's an example to demonstrate this; in this query, the price column is
the third column in the select list, shop is one, game is two, and price is three. So
two order by the price column, you can specify order by three. This is a
convenient shortcut that can save you from typing the full column name in the
ORDER BY clause.

As I said this works in Impala and it works in some other SQL engines too, it might
work with Hive if the instance of Hive you're using is configured a certain way or if
you're using a newer version of Hive, but you should not count on it working in
Hive. You can try this out to see if it works with the SQL engine you're using, but
keep in mind that if it doesn't work you won't necessarily see an error. Instead the
SQL engine will probably act like you're asking it to sort the results by a scalar
number repeated in every row. So it will just return the results in arbitrary order.
In general, I don't recommend using the shortcut method because it makes it

harder to see what your query does and it could cause trouble if you changed
your select list but then forgot to change your ORDER BY clause. Finally, some
advice for using ORDER BY with engines like Hive and Impala. When you're
working with very large datasets, sorting them it uses a lot of computing power.

Sorting is a notoriously difficult operation to optimize especially for distributed
systems. So you should only sort your results when you need to. If you're
accustomed to using relational database systems with small to medium sized
data, you might be in the habit of using ORDER BY when it's not strictly necessary.
Because in that situation it doesn't introduce as much of a performance penalty.
But you should break that habit when you're using distributed SQL engines.
Sorting happens after all the other operations that you learned about. After
filtering, after grouping, and aggregation. So one good strategy is to use those
prior operations to reduce the number of rows in the data as much as possible
before using ORDER BY. That will help your ORDER BY queries to use fewer
compute resources and finish faster.

THE LIMIT CLAUSE

The final clause that's covered in this course and the clause that comes last in the
select statement is the optional limit clause. The purpose of the limit clause is to
set a maximum number of rows for the query to return. Here's an example. The
flights table in the fly database contains tens of millions of rows, but say you want
to only return five of those rows. To do this, you would run the query, select *
FROM flights LIMIT 5, then the result will have five rows and no more. Now you're
probably wondering which five rows do you get. What you get is just five arbitrary
rows. If you ran this same query again on the same data, you might get five
different rows, or it might be the same five. There's no guarantee.

The exception to this is when you also use an orderBy clause, you'll learn about
that in an upcoming video. Here's another example. This one is a more
complicated query. It finds the carriers, the airlines that have at least 5,000 flights
with an air time of seven hours or longer and the limit clause limits the results to
10 rows. But notice that the results set has only four rows. That's because in this
case, the result of all the other clauses returns fewer than the specified limit of
10. When this happens the limit clause has no effect.

So you should never assume that you'll get exactly as many rows as your limit
clause specifies, it can be fewer but it will never be more. The limit clause must
come after all the other clauses, and it's applied after all the other clauses. So in
this example it does not affect which of the individual rows of the flight table are
included in the aggregations, it's applied after the filtering, after the grouping,
after the aggregation, after everything else at the very end and it only affects how
many of the result rows are returned. The number that comes after the limit
keyword generally needs to be a non negative literal integers.

So any whole number, zero or higher. Some SQL engines will let you use an
expression after the limit keyword, but only a constant numeric expression, not
an expression with column references or column aliases. Some SQL interfaces like
Hue automatically limit the number of rows that a query can return. Recall that
the Query Editors in Hue display up to 100 rows initially, and they let you load
more rows by scrolling down. That makes it unnecessary to use the limit clause
unless you want to use a limit smaller than 100.

In Hue, if you do use the limit clause and you specify a number higher than 100,
then Hue will still display only 100 rows at first, and you'll need to scroll down to
display anything beyond the 100th row. However, if you continue scrolling down,
it will not load any more than the number of rows you specified in the limit
clause. But you can't always rely on your SQL client to automatically limit how
many rows are displayed. With some software if you run a query that returns
millions or billions of rows, the software will attempt to download them all, which
could put a big load on your SQL engine, saturate your network, use up lots of
memory, and take a long time to finish. By using the limit clause, you can prevent
this from happening.

WHEN TO USE THE LIMIT CLAUSE

 In this video, I'll describe when it's a good idea to use the LIMIT clause, and when
you could get yourself in trouble by using it for the wrong purpose. One very
common use of the LIMIT clause is when you want to return just a few rows from
a table to get a sense of what the data in the table looks like and what values are
in the different columns. The LIMIT clause is great for this. You use it to return a
few arbitrary rows and then inspect them. Often, that will give you ideas for how
you might analyze the data or what queries to run next. For example, one of the
first things you might do when working with the flights table is to return 5 or

maybe 10 or 20 rows, and take a look at them. By doing this, you can quickly
ascertain some things about the data.

For example, you can see how the year, month, and day are represented. Four-
digit years, and integer month and day values. You can see that the time columns
appear to be formatted as the hour in 24-hour time, followed by the minutes.
From there, you might run some follow-up queries to find out things like, what's
the earliest and the latest year represented in the table, and are there any
missing values in the time columns? Another common use of the LIMIT clause is
when you've written a select statement but you don't know how many rows it will
return, and you want to avoid returning an enormous number of rows. This is a
very common situation.

Working as a data analyst, it's not unusual to realize you have no idea whether a
query that you just wrote will return 100 rows or 100,000 rows. So if you find
yourself in this situation, often the safest and easiest thing to do is to put a LIMIT
clause at the end of the query to limit the result set to a number of rows that's
small enough that it won't cause any problems. Then after you run the query, you
can check whether the number of rows it returned reached that limit that you set.
If it did, then you could modify the query to reduce the number of rows, for
instance, by using more restrictive filtering conditions or by using different
grouping columns. Of course, another option is to find out exactly how many rows
will be returned by writing and running a separate count query, but that requires
writing and running a separate query.

So often, it's just quicker and easier to add a LIMIT clause to the query you
already have. Here's an example of this. Say, you're using a BI or Data
Visualization Tool, and you want to use it to draw a map showing all the routes
represented in the flights table, all the origin and destination pairs with lines
connecting them, and you want the lines to vary in thickness based on how many
flights flew on that route. Many BI and Data Visualization Tools can draw maps
just like that. To get the data you would need to draw a map like that, you would
run a query like this. It groups the flights table by origin and destination, and in
each row of the result set, it returns an origin, a destination, and the number of
flights that had that origin and destination.

The trouble is, we don't know how many rows this query will return. If it were to
return more than about 1,000 rows, the map might take a really long time to
render, and it would be so crowded with lines that you couldn't interpret it. A
quick and easy way to avoid this problem is to add LIMIT 1000 to the query, then
you know your map will not take too long to render and it will not be crowded
with many thousands of lines. After running this query with the LIMIT 1000, you
could see in the BI or Data Visualization Tool that it did in fact return 1000 rows. It
hit the limit. So then you could experiment with ways to filter the data to avoid
hitting this limit of 1000 rows.

One way to achieve this would be to return only the routes that had many flights.
In other words, omit the less frequently flown routes from the results. With a
little bit of experimentation, you could find out that filtering out the routes that
had fewer than 20,000 flights gives a result with fewer than 1,000 rows. A result
with fewer than 1,000 rows means this query is no longer hitting the limit, so then
you could remove the LIMIT clause. In addition to limiting the number of rows
that are returned, the LIMIT clause can also reduce the amount of compute
resources that the SQL engine needs to process your query.

So in addition to speeding up your queries, it could also reduce the load you're
putting on the SQL engine making other people's queries run faster too. Recall
that when the LIMIT clause limits the number of rows that are returned, it picks
the rows arbitrarily. There's no guarantee about which rows you'll get. You might
think this means that you can use the limit clause to get a random sample of
rows, but you should not use the limit clause if what you want is a random
sample. With a distributed query engine like Hive or Impala, there are a variety of
unpredictable factors that affect which rows are returned by the LIMIT clause,
factors like the processor, memory, and network usage of the different computers
on the cluster, and how the data is distributed across the cluster. So which rows
are returned is not predictable, but it's also not random.

This is an important distinction. Unpredictable does not mean random. Here's an
analogy to help you understand this. Imagine you have a brand new deck of cards
and you just took it out of the box, so the cards are in predetermined order,
arranged by suit, then by rank. Then imagine you shuffle this deck just one time.
One shuffle is not enough to make the cards be in really random order. After just
one shuffle, they're not in a totally predictable order but they're definitely not in

totally random order either. This is a lot like what happens with rows in a
distributed SQL engine. They get shuffled a little bit so they're not in a predictable
order but they're not thoroughly shuffled, so you should never consider them to
be in random order. So the subset of rows that's returned when you use a LIMIT
clause is not a random sample. It's taken from the top of a pile that's not in
random order. It might be called a sample of the data, but it's definitely not a
random sample. Because it's not a random sample, you should never interpret the
results from a select statement with a LIMIT clause as being representative of the
full results like the way that a real random sample of the rows would be.

USING LIMIT WITH ORDER BY

The LIMIT clause is especially useful when it's used together with the ORDER BY
clause. Recall that the ORDER BY clause arranges the rows of the result set in
order by some column or columns. This means that the rows at the top of the
result set represent the greatest or the least, or the best or the worst of all the
records, as measured by the values in that column or columns. In data analysis,
it's common to want to return just a few of these most extreme cases to identify
them and take some action. For example, who are the one hundred highest
spending customers? So we can send them a loyalty reward?

Or who are the ten lowest performing sales people? So we can put them on an
improvement plan? Using ORDER BY together with LIMIT, lets you return a
specified number of the most extreme records. Here's an example of this. Here's a
query that returns the ten routes in the flights table that have the longest average
air time. A route is a combination of origin and destination. So this query groups
the flights table by origin and destination. And returns the avg_air_time for each
origin destination pair. The order by clause arranges the results in descending
order by avg_air_time with the nulls last at the bottom. The nulls last is important
here if you're using Impala.

Without it, you would just see a bunch of nulls at the top of the results set. The
nulls last puts the nose at the bottom where they're out of the way. Finally, this
query has limit 10, to return the top 10 origin destination pairs. This kind of query
that uses a LIMIT clause, together with an ORDER BY clause, is called a top-n
query. Because it returns the top-n results where n is some number, like ten in

this example. Or it might be called a bottom-N query depending on what row
order is used. Looking at the results from running this query, you can see that all
of these ten longest flights are between H and L, which is Honolulu, Hawaii and
cities in the Eastern United States.

It looks like the ones going to Honolulu from the east to the west, take longer on
average than the ones going the other way. This is because the jet stream winds
in the upper atmosphere go from west to east. And it looks like the two longest
routes at the top of the results set are the routes from the New York City airports,
JFK and EWR to Honolulu. These are the only ones that have average flight times
exceeding 600 minutes or 10 hours. In the results set, noticed that I also included
a column named count_air_time.

This is computed using the expression count of airtime, so it shows how many
flights on each route have a non missing value in the airtime column. It's a good
idea to include a count column like this, when ever you're computing averages or
other aggregates. It helps you to understand how confident you should be in
those aggregates. For example, looking at the first two rows of this result set, you
can see that the average in the first row was calculated using almost 2,000 values
of air time. And the average in the second row was calculated using more than
3,500 values of air time.

These large count values give me confidence in these averages. But if there were
a row here where average_air_time was very high, but count_air_time was very
low, then I would want to check whether that was caused by erroneous values in
the air_time column. When you use top n queries you need to watch out for ties
in the column or columns that you're sorting by. Here's an example to explain why
this is important. Imagine you're the manager of a company's sales department
and you want to reward your top three highest performing sales people with a
trip to a luxury resort. The performance metric you're using is last year's total
sales in dollars.

So to find your top three performers, you would run a top three query like this.
For each salesperson the query computes their name and their total sales. And
the result set is returned in descending order by total sales, and it's limited to
three rows. And here's the result. It shows that the three top performers are
Ambrosio, Lujza and Sabahattin in that order. So they are the three sales people

who get to go on the trip. But here's the problem, if you change limit three to
limit five and run the query again, you can see that there's another sales person,
Val, who has exactly the same total sales as Sabahattin.

They both have the same value, $320,000. The query with the limit three
arbitrarily returned Sabahattin not Val, because when there's a tie in the ordering
column, the order of the tied rows is arbitrary. So it was purely by chance that it
returned Sabahattin and not Val. Imagine you ran the query with the limit three,
and based on the result of that query, you sent Sabahattin on the luxury trip but
not Val. I think Val would be pretty angry. Believe it or not people actually make
this type of error. Even if the values were an exact tie, say Val's total sales were a
few hundred dollars less then Sobahattin's.

It would still seem unfair to deny Val a reward based on that. Important
distinctions should not be made on the basis of insignificant differences. So when
you're running a top n query, if there's going to be some action taken based on
whether a row is in the top n or not, then it's best to return some extra rows, and
check for ties or near ties, in the values that are around that nth row. If there are
ties or near ties there, then look at some of the rows above or below and try to
find a threshold, a cutoff point that seems fair. In this example, by returning five
rows instead of three, you're able to notice the tie between Sabahattin and Val.

And you can also see that the next best performer, Virginia, has a significantly
lower total sales number. Based on that, you might decide to send both
Sabahattin and Val on the trip. Or to send neither of them. Or you might find
some other appropriate metric to break the tie between them.

USING LIMIT FOR PAGINATION

Recall that the LIMIT clause is used for returning up to a certain number of result
rows, like up to 100 rows. But what if you want to do something like return 100
rows, then return the next 100 rows, then the next 100 rows, and so on? This is
called pagination or paging because you can think of it like returning one page of
results at a time. Many SQL engines allow you to paginate query results by
specifying a row limit and a row offset. So for example, to paginate your results

into pages of 100 rows each, you would first specify a limit of 100 and an offset of
zero. That's the first page.

Then you would specify a limit of 100 and an offset of 100 to get the second page.
Then a limit of 100 and an offset of 200 to get the third page and so on. So by
running a sequence of multiple queries with different offsets, you can return the
rows of the result set split up into multiple pages. So you already know how to
specify the limit by using the limit clause. But how do you specify the offset? Well,
different SQL engines support different ways of specifying it. With Impala and
PostgresQL, it's specified using the offset keyword which comes after the limit.
But Hive uses a different syntax. With Hive, there's no offset keyword. Instead you
specify two numbers after the limit keyword, separated by a comma. The offset
comes first, then a comma, then the limit. This only works with newer versions of
Hive. MySQL supports both of these syntaxes. Some other SQL engines use other
syntaxes.

For example, some use the keyword skip instead of offset. Check the
documentation for the SQL engine you're using to see which syntax it supports. In
some of the SQL engines that use the offset keyword like Impala, you can actually
use it without the limit keyword. So you can specify only an offset and no limit. So
you could think of offset as a separate clause, but it's pretty unusual to use offset
without limit. So usually I just think of offset as an optional part of the limit
clause. There's something important you need to remember when you use limit
and offset for pagination. First, recall that when you run a select statement using
a distributed SQL engine, if the statement does not have an ORDER BY clause,
then the order of the rows in the results set is arbitrary and unpredictable. You
could run the exact same query twice and get the rows in a different order each
time.

What this means for pagination is that if you were to run a sequence of multiple
queries with different offsets to paginate your results, each of those queries could
shuffle all the rows differently before applying the limit and offset. So the query
to get the second page of results might return some of the same rows that were
returned by the query that you ran to get the first page and some of the rows
might not be on any of the pages. So across the pages of the results, there could
be duplicate rows and missing rows.

That's no good. Because of this, it's essential that you use an ORDER BY clause to
arrange the rows in deterministic order whenever you use limit and offset for
pagination. When I say deterministic order, I mean that the order of the rows is
not at all or arbitrary or unpredictable. Every row is arranged in predictable order
according to the ORDER BY clause. With the rows of the full results at in
deterministic order, then the limit and offset clause can split it up into nice clean
pages of results, where every row appears on exactly one page. Some SQL engines
like Impala try to enforce this by throwing an error if you try to use limit and
offset without ORDER BY. But some other SQL engines will allow you to leave off
the ORDER BY clause.

So it's up to you to remember that you need to use it. To ensure that you don't
have missing or repeated rows in paginated results, you need to ORDER BY a
column that has a unique value in every row, or by multiple columns that have a
unique combination of values in every row. That way, there are no ties in the
values you're ordering by because recall that if there are ties, then the order of
the tied rows is arbitrary not deterministic, and we need to make the row order
deterministic. Often, there is a single column like a unique ID or unique
timestamp column that has a unique value in every row. If so, you can ORDER BY
that column.

But sometimes, there's not a single column like this. For example, the flights table
on the VM does not have any one column with a unique value in every row. But if
you ORDER BY year, month, day, origin, destination, carrier, and flight, then the
rows will be in deterministic order and you can use limit and offset to get cleanly
paginated results. I think there are still a few rows there that are in indeterminate
order due to missing or erroneous values. So you might also want to filter those
out. Also, keep in mind when you are using the ORDER BY clause in a query that
paginate the results, that the purpose of the ORDER BY clause in this case is not
necessarily to return the rows in a meaningful order, like it is in a top end query.

Often, the point is just to get the rows in some deterministic order, so the
pagination works correctly. Any order might be fine, just so long as it's
deterministic. This method of paginating results by running a sequence of
separate queries with different offsets, it works, but it's inefficient. It requires
running multiple queries which can put a lot of stress on the SQL engine. It's
especially inefficient if you run many queries that each return a small number of

rows. For performance, it's better to run fewer queries that each return a larger
number of rows. There are more efficient ways to implement pagination. But to
use them, you would need to use a programming language to write an application
that communicates with the SQL engine through one of the interface standards
like ODBC or JDBC or Thrift.

The details of that are beyond the scope of this course. Review of the SELECT
Statement In this course, you've learned about all seven of the clauses that you
can use in a select statement. The select clause, which specifies what columns
should be returned in your query result. The from clause, which specifies where
the data you're querying should come from. The where clause, which filters the
individual rows of data based on some conditions. The group by clause, which
splits data into groups, and the related topic of aggregation which reduces each
group down to a single row. The having clause, which filters the data based on
aggregates.

The order by clause which sorts or arranges the results of a query, and finally the
limit clause which controls how many rows a query can return and can also be
used to paginate query results if you specify an offset. The order in which I have
taught these seven clauses in this course matches their correct order within a
select statement. Select, from, where, group by, having, order by and limit in that
order. There are some minor exceptions. But in general, you must use the clauses
in that order or you'll get an error from the SQL engine. But as you know, a query
does not need to include all of these clauses. The only clause that's strictly
required by all SQL engines is the select clause.

Some engines also require the from clause, but all the others are optional. So you
can pick and choose which clauses to use depending on the task at hand. This
makes select statements very flexible, and you've seen in this course how you can
use different combinations of these clauses to answer very different kinds of
questions. So that's the order in which you must use the clauses in a select
statement. But the order in which the SQL engine executes these clauses when it
runs a select statement is slightly different. Specifically, SQL engines execute the
select clause not at the beginning, but later after the from, where, group by and
having clauses. So what a SQL engine does when it runs a select statement is, first,
it executes the from clause, which tells it which table the data should come from.

It reads the data from that table, and if there's a where clause it uses the
conditions specified there to filter the individual rows of data as it reads them in.
Then once it's done reading the data in, if there's a group by clause, the SQL
engine uses the grouping columns specified there to split the data into groups.
Next, if there's a having clause, it computes the aggregate expressions there and
uses those to filter the groups. Only then does the select list get executed to
create the columns that will be returned in the results set. Next, if there's an
order by clause, the SQL engine uses the columns specified there to arrange the
rows of the result set. Finally, if there's a limit clause, the SQL engine uses that to
specify the maximum number of rows that can be returned.

So that's the order in which SQL engines execute the clauses of a select statement
in general. However, different SQL engines have their own minor variations on
this. For example, a common variation that many SQL engines use is that they
partially process the select list earlier to identify the column aliases that are
defined there. That way those aliases can be used in the group by and having
clauses. But regardless of minor exceptions like that, remembering this execution
sequence will help you to understand how a SQL engine takes a select statement
and turns it into a result set. Review In this course, you've learned about all seven
of the clauses that you can use in a select statement. The select clause, which
specifies what columns should be returned in your query result. The from clause,
which specifies where the data you're querying should come from. The where
clause, which filters the individual rows of data based on some conditions.

The group by clause, which splits data into groups, and the related topic of
aggregation which reduces each group down to a single row. The having clause,
which filters the data based on aggregates. The order by clause which sorts or
arranges the results of a query, and finally the limit clause which controls how
many rows a query can return and can also be used to paginate query results if
you specify an offset. The order in which I have taught these seven clauses in this
course matches their correct order within a select statement. Select, from, where,
group by, having, order by and limit in that order. There are some minor
exceptions. But in general, you must use the clauses in that order or you'll get an
error from the SQL engine. But as you know, a query does not need to include all
of these clauses.

The only clause that's strictly required by all SQL engines is the select clause.
Some engines also require the from clause, but all the others are optional. So you
can pick and choose which clauses to use depending on the task at hand. This
makes select statements very flexible, and you've seen in this course how you can
use different combinations of these clauses to answer very different kinds of
questions. So that's the order in which you must use the clauses in a select
statement. But the order in which the SQL engine executes these clauses when it
runs a select statement is slightly different.

Specifically, SQL engines execute the select clause not at the beginning, but later
after the from, where, group by and having clauses. So what a SQL engine does
when it runs a select statement is, first, it executes the from clause, which tells it
which table the data should come from. It reads the data from that table, and if
there's a where clause it uses the conditions specified there to filter the individual
rows of data as it reads them in. Then once it's done reading the data in, if there's
a group by clause, the SQL engine uses the grouping columns specified there to
split the data into groups. Next, if there's a having clause, it computes the
aggregate expressions there and uses those to filter the groups.

Only then does the select list get executed to create the columns that will be
returned in the results set. Next, if there's an order by clause, the SQL engine uses
the columns specified there to arrange the rows of the result set. Finally, if there's
a limit clause, the SQL engine uses that to specify the maximum number of rows
that can be returned. So that's the order in which SQL engines execute the clauses
of a select statement in general. However, different SQL engines have their own
minor variations on this. For example, a common variation that many SQL engines
use is that they partially process the select list earlier to identify the column
aliases that are defined there. That way those aliases can be used in the group by
and having clauses. But regardless of minor exceptions like that, remembering
this execution sequence will help you to understand how a SQL engine takes a
select statement and turns it into a result set.

WEEK 6

LEARNING OBJECTIVES

 Differentiate between using UNION and using JOIN
 Write and run SELECT statements using UNION and UNION ALL
 Write SELECT statements using JOIN, handling non-matching records

appropriately for the task
 (Honors) Write and run SELECT statements using advanced JOIN clauses,

including cross joins, non-equijoins, left semi-joins, and null-safe joins

COMBINING QUERY RESULTS WITH THE UNION OPERATOR

The union operator in SQL combines two results sets into one. It takes the rows
returned by one select statement and the rows returned by another select
statement, and it stacks them together. It combines them vertically. There are
two variations of the union operator: union all and union distinct. I'll first to
demonstrate union all. Here is the simple select statement that returns the id and
name columns from the games table in the fun database. You can see it returns
five rows. Here's a simple select statement that returns the id and name columns
from the toys table in the toy database.

You can see that this one returns three rows. To return one result set containing
the five rows from the games table and the three rows from the toys table for a
total of eight rows, you can combine these two queries into one using union all.
The results set shown here has the games on the top, and the toys on the bottom,
but in general the order of the rows in a result set of a union is arbitrary. Just like
with any unordered result set. So you will not necessarily see the rows from the
first query on the top and the second query on the bottom, they could be the
other way or they could be shuffled together.

Here's another example of union all. Say you wanted to return the country codes
for the countries in the customers table, and for the countries in the offices table.
Both of these tables are in the default database. To do that, you could run the

query SELECT COUNTRY FROM customers UNION ALL SELECT country FROM
offices. This is a query that you might run in the real world to see all the countries
where you're doing business.

In the results that you can see this returns eight rows. But notice that one country
code appears twice in the results set US. Because there's a customer in the United
States and an office in the United States US shows up twice. To eliminate this,
duplicate result row. You could use Union Distinct, instead of Union All. When you
use Union Distinct, then after the SQL engine combines the results of the two
queries, it also omits any duplicate rows from the result set. So every row in the
results set will be unique. Most SQL engines support both Union All and Union
Distinct. This includes Impala, MySQL, Postgres QL, and newer versions of HIV.
However, older versions of HIV do not support Union Distinct. They only support
Union All. Check the documentation or run a simple test to see whether the SQL
engine you're using supports Union Distinct. So these keywords all and distinct
are used to modify the behavior of the union operator. You might be curious what
happens if you use the union operator alone without one of these keywords.
Oddly Union by itself is the same as Union Distinct.

This might make sense if you understand set theory in mathematics, but
otherwise it probably seems backwards. I recommend including the distinct
keyword whenever you want the duplicate rows removed from the results set.
Including the distinct keyword makes the purpose of the query more explicit.
Unfortunately, there are some SQL engines that will perform a Union Distinct. If
you use the union operator alone, but they will not allow you to explicitly use the
distinct keyword. So again, if you're using some other SQL engine, check the
documentation or run a test to see whether the union operator alone with no
modifiers returns the distinct rows of the combined result set.

The select statements on both sides of the union operator should have the same
schema. In other words they should have the same number of columns and the
pairs of corresponding columns should have the same names, and the same
datatypes or at least the same high level categories of data types like both
numeric or both character string. When you write a query that includes a union,
you should use explicit type conversion, and column aliases to make this happen.
Here are a couple of examples to demonstrate this. Say you wanted to union
together the name and list price columns from the games table in the fun

database with the name and price columns from the toys table in the toy
database. Both of these pairs of columns, name, and name, list price, and price
have the same datatypes. But list price and price are different names.

So to avoid any problems, you should use a column alias in one or both of the
select statements to give these two columns the same name. In this example, I
added as price to the first select statement so they're both named price. Say you
wanted to return the distinct values of year that occur in either the flights table in
the fly database or in the games table in the fund database. Both of these tables
have columns named Year. But in the flights table, year is an integer column,
whereas in the games table it's a string column. So in this example, I explicitly
casted that string column to an integer column, and I also added as year to keep it
named Year.

Some SQL engines will tolerate the names or datatypes being different, but to
make your queries safe and portable, I recommend making the names and data
types the same using explicit casting and the as keyword like in these examples.
Don't rely on the SQL engine to do it for you. You might notice if you're browsing
the documentation or searching for help that Union is sometimes referred to as a
Clause. I think it's better to think of it as an operator whose operands on the two
sides are select statements. Also, the examples I showed in this video were all
very simple. The select statements on the two sides of the union had only select
and from clauses, but you can use more complex select statements with union.
They can include some of the other clauses.

MISSING OR TRUNCATED VALUES FROM TYPE CONVERSION

In queries that use UNION (and in other types of queries), you will sometimes
need to use explicit type conversion (also called explicit casting) to convert a
column (or a scalar value) from one data type to another. In most SQL dialects,
this is done using the cast function. However, you need to be careful about a
couple of things when using cast.

Review: Explicit Type Conversion
As you might recall, you can cast any numeric column to a character string
column, like this:

SELECT cast(list_price AS STRING) FROM games;

If you have a character string column whose values represent numbers, then you
can cast it to a numeric column, like this:
SELECT cast(year AS INT) FROM games;

Refer back to the video “Data Type Conversion” in Week 2 of this course if you
need more of a refresher on the basics of data type conversion.

Type Conversion Can Return Missing Values

Under some circumstances, the cast function will return missing (NULL) values. A
common situation in which this happens is when you have a character string
column whose values do not represent numbers, and you try to convert it to a
numeric column.

For example, this query attempts to convert the character string values in
the name column (values like Monopoly and Scrabble) to integer values:
SELECT cast(name AS INT) FROM games;

When you run this query with Hive or Impala, it returns a column of NULL values,
because there is no way to cast these character string values to known integer
values.

However, some other SQL engines have different ways of handling situations like
this. If you use MySQL to cast a character string column as a numeric column, it
returns zeros for the values that do not represent numbers (not NULLs like Hive
and Impala). And PostgreSQL throws an error if you attempt to cast a character
string that does not represent a number as a number. Also note that different SQL
engines have different data types, so the data type name you use after
the AS keyword in the cast function varies depending on the engine. For example,
in MySQL you should use SIGNED INT instead of INT, and in MySQL and
PostgreSQL you should use CHAR instead of STRING.
Type Conversion Can Return Truncated Values

Under some circumstances, the cast function will return truncated (cut off)
values. A common situation in which this happens is when you convert decimal
number values to integer values.
For example, this query converts the decimal numbers in the list_price column
(which have two digits after the decimal) to integer values:

SELECT cast(list_price AS INT) FROM games;

When you run this query with Impala or Hive, it truncates (cuts off) the decimal
point and the two digits after it. For example: 19.99 becomes 19.
However, in this situation, some other SQL engines round instead of truncating.
When you run a query like this with MySQL or PostgreSQL, it rounds each decimal
number value to the nearest integer value. For example: 19.99 becomes 20.

USING ORDER BY AND LIMIT WITH UNION

The SELECT statements on both sides of a UNION operator, can use any of the
clauses that you've learned about in this course, with two exceptions; the ORDER
BY, and LIMIT clauses. I'll discuss the ORDER BY clause first. The way that the
ORDER BY clause works when you use the UNION operator, differs depending on
what SQL engine you're using. Here are some examples to demonstrate this. Say
you wanted to return the names and prices of all the games, from the games
table, and all the toys from the toys table. To do that, you would run a query like
this; SELECT name, list_price AS price FROM games UNION ALL SELECT name,
price FROM toys.

On the VM, you can run this query in MySQL or PostgreSQL as it is. For Hive or
Impala, you would need to add the database names before the table names;
fun.games and toy.toys, and in the results set, you can see the names and prices
of all five games and three toys. Recall that the row order is arbitrary, the rows
might be in a different order for you. Now, what if you wanted to return these
rows in a specific order? Say in ascending order by price; the lowest price at the
top, the highest price at the bottom? Well, with some SQL engines, including
MySQL and PostgreSQL, you can do that by adding an ORDER BY clause at the end
of the whole query.

Notice that all the games and toys are now arranged in ascending order by price.
This ORDER BY clause does not get only applied to the result of the second
statement, it gets applied to the full results of the UNION. So it arranges all the
toys and the games in order by price. You can see Candy Land is the least
expensive, and Etch A Sketch and Risk are tied for the most expensive, so the
order of these last two rows is arbitrary. Again, this method works with some SQL
engines but not with others.

This does not work with Impala, and it does not work with Hive, or at least not
until the very recent version of Hive. If you try this with Hive or Impala, you will
not get an error, in Impala depending on what client you're using to run the
query, you might see a warning, but it will still return a results set. However, the
rows of the result set will not be arranged in order by the price column. Also, you
might be tempted to try something like this. Adding an ORDER BY clause, to both
of the two SELECT statements on both sides of the UNION operator. But this will
also not return a result set that's arranged in order by the price column.

Depending on what SQL engine you're using, it might throw an error, or it might
just ignore the two ORDER BY clauses and return the results in arbitrary order, or
it might actually arrange each of the two intermediate results sets in the desired
order, but then when the UNION operator shuffles the two intermediate results
sets together, that row order might be lost. So using an ORDER BY clause in both
of these SELECT statements in a UNION, is generally not a technique that you
should use with any SQL engine. With some SQL engines, including Impala and
some versions of Hive, the only way to return the full results of a UNION arranged
in order, is to use something called a subquery.

Subqueries are a more advanced topic that's beyond the scope of this course,
they're covered in a later course, in this specialization. The way that the LIMIT
clause works when you use the UNION operator, is similar with some SQL engines
including MySQL and PostgreSQL. You can put one LIMIT clause, at the end of the
whole query, and that will limit the number of rows returned in the full results
set. But with others SQL engines including Impala and some versions of Hive, this
does not work. You can use two separate LIMIT clauses in the statements on
either side of the UNION, to limit how many rows each of these can return, but
there is no way to limit the total number of rows in the full results set, except by
using subqueries, which you'll learn about in a later course in this specialization.

So when you're using the UNION operator, remember that it's safe to use most of
the clauses you've learned about, in the two SELECT statements on either side of
the Union. You can use the SELECT, FROM, WHERE, GROUP BY, and HAVING
clauses, but be careful about using the ORDER BY and LIMIT clauses. Check the
documentation for this specific SQL engineer you're using, and run some simple
tests to make sure you understand how it will interpret the ORDER BY and LIMIT
clauses in UNION queries.

USING UNION TO COMBINE THREE OR MORE RESULTS

You can use UNION ALL or UNION DISTINCT to combine three or more query
results into a single result set. To do this, simply add another UNION operator
after the final SELECT statement and add another SELECT statement after it. For
example, the following query uses three SELECT statements, combined with
two UNION ALL operators:

 SELECT color, 'red' AS component, red AS value
 FROM crayons
 WHERE color = 'Mauvelous'
UNION ALL
SELECT color, 'green' AS component, green AS value
 FROM crayons
 WHERE color = 'Mauvelous'
UNION ALL
SELECT color, 'blue' AS component, blue AS value
 FROM crayons
 WHERE color = 'Mauvelous';

This query returns the three component values (red, green, blue) of the color
named Mauvelous, in three separate rows.
Be sure to use a semicolon only at the very end.

When using three or more UNION operators in one query, it’s a good idea to
make them all UNION ALL or all UNION DISTINCT. Mixing the two different types
of UNION operators in a single query is likely to cause confusion.

The rules that apply when using a UNION to combine two results also apply in the
case of three or more results:

The SELECT statements should have the same number of columns and the sets of
corresponding columns should have the same names and the same high-level
categories of data types. Use explicit casting and column aliases to ensure this.
You can use the SELECT, FROM, WHERE, GROUP BY, and HAVING clauses in
each SELECT statement, but be careful about using the ORDER BY and LIMIT
clauses. Check the documentation for the specific SQL engine you’re using, and
run some simple tests to make sure you understand how it will interpret
the ORDER BY and LIMIT clauses in UNION queries.

INTRODUCTION TO JOINS

A join in SQL combines data from two related tables into one result set. In the
simplest sense, a join takes columns from one table and columns from another
table, and it merges them together, it combines them horizontally. But a join does
not to just throw together the columns from the two tables, it also matches the
rows from the two tables. When you write a query in SQL that joins two tables,
you specify what the relationship between these two tables is, and the SQL
engine uses that relationship to match the rows.

For example, the toys table and the makers table both in the toy database are
related by the fact that each toy is made by a specific maker. The column named
maker ID in the toys table, refers to the column named ID in the makers table. So
for example, in the toys table, you can see that light bright has maker ID 105. In
the makers table, that id 105 represents the company Hasbro. So when you write
a query that joins these two tables, you specify that the maker ID column in the
toys table corresponds to the ID column in the makers table, and the SQL engine
uses the matching values in these corresponding columns to match the rows
when it combines the two tables together.

The reason that joins are so important and so widely used in SQL is that related
data are often stored in separate tables. Here for example, the name and city of

the maker of each toy is not included in the toys table. Instead, that information is
stored in the separate makers table. This principle of storing related data in
separate tables is an important element of what's called normalized design. If you
completed the first course in this specialization, you might recall some of the
advantages of storing data this way. Although it's advantageous to store data in
separate tables, it's often necessary to join the data from those separate tables
together in order to analyze it and answer questions about it.

For example, say you needed to answer the question, which toys are made by
Ohio Art Company? It's impossible to answer this by using only one of these two
tables, you need both tables. The makers table tells you that Ohio Art Company
has ID 106, and then the toys table tells you that the only toy with that maker ID
one 106 is Etch-a-Sketch. You could answer a question like this by running a
sequence of two queries, but by using a join, you can answer it with just one
query. In the next video, I'll introduce the syntax of join queries. Join Syntax
Earlier in this course, you learned that the FROM clause is the clause you used to
specify where the data should come from.

That was true when you were querying data from single tables, and it's also true
when you use a JOIN to combine data from two tables. In the case of a single
table, you use a single table reference after the FROM keyword. But to join data
from two tables, you use two table references separated by the keyword JOIN.
The table references can be simple table names like in this example, toys and
makers, or they can be in the form, database name.table name. The two tables
you're joining can be in the same database, or in two different databases, or
schemas. If they are in different databases, then you'll need to use database
name.table name.

So that's how you specify which two tables to join, but you also need to specify
what the relationship between the two tables is so that the SQL engine can match
the rows. To do this, you use the ON keyword followed by an expression that
specifies the relationship between the tables. This comes right after the table
names, it's part of the FROM clause. In this example, it's on toys.maker_id equals
makers.id. Looking at the toys and makers tables, recall that the maker id column
in the toys table corresponds to the id column in the makers table. So this
expression after the ON keyword, tells the SQL engine to use the matching values
in these corresponding columns to match the rows when it joins the two tables

together. This expression after the ON keyword is known as a join condition, and
it's typically in this form, a reference to a column in one table, the equals sign, and
a reference to the corresponding column in the other table.

The column names are prefaced by the names of the tables they come from,
toys.maker_id and makers.id. This way the SQL engine knows which table each of
the corresponding columns comes from. The maker_id column comes from the
toys table, and the id column comes from the makers table. These corresponding
columns in a join are sometimes called join columns or join key columns. If you
run this query, you get this result. The information about each toy is returned
along with information about the company that makes it. Because the select list is
a select star, the query returns all the columns from both tables. But looking at
the results set, you can see there are a few problems. There are two columns
named name, one is from the toys table and one is from the makers table, and
also there are two columns named id.

Also, the column named maker_id and the second column name id contain the
same information. So you do not need both of these columns. To solve these
problems, you need to replace the star after the select keyword with an explicit
list of the columns to return. But because you're querying data from two tables,
you need to write this list differently than you would if you are querying from just
one table. The columns id and a name each need to be prefaced with a table
name so the SQL engine knows whether you want the one from the toys table, or
the one from the makers table. So in the list, you can see toys.id, toys.name, and
makers.name.

For each of these, I also included a column alias with the as keyword to control
the names of the resulting columns, toys.id as id, toys.name as toy, and
makers.name as maker. These column aliases make the results easier to
understand. For the remaining columns in this select list, price, maker_id, and
city, there is no ambiguity about which table there should come from, there's only
one price column, it's from the toy table. There's only one maker id column, it's
from the makers table, and there's only one city column and it's from the makers
table. So for those three columns, you do not need to qualify each column name
with a table name, just the bare column name is sufficient. However, some
people prefer to qualify all the column names with table names just to avoid any
possibility of ambiguity. This is a good practice with join queries, especially if

you're writing queries that we run again in the future or built into an application.
So that's the syntax of a basic join query in SQL.

But there's one more thing, qualifying column names with table names like this
can get awfully repetitive especially if the table names are long. Fortunately,
there is a shortcut that you can use to avoid typing the table names over and over
again. You can give an alias to each of the table names, and use these table aliases
instead of the full table names. Table aliases are usually chosen to be very short
often just a single character. A common choice is the first letter of the table name
if they're different letters. In this example, it's toys as t and makers as m. The AS
keyword is optional and it's common to omit it.

Once you have given these aliases to the tables, you can use them in the select list
and in the join condition after the ON keyword. So in both of these places, you
can replace toys with t and makers with m. Notice how that makes the query
much more concise. Using table aliases is optional, but in the real world, you'll
find that they are used in almost every join query. The example join query I
showed in this video used only the SELECT clause and the FROM clause, but you
can use all of the other clauses with a join query, there are no exceptions to this.
The aliases that you give to the tables in the FROM clause, you can use those in all
the other clauses to resolve any ambiguity about which columns are from which
tables.

INNER JOINS

So you've seen what a basic SQL join query looks like. In the from clause there are
two table references separated by the keyword join. After that there's the on
keyword followed by the join condition and table aliases are used to resolve
ambiguity about which table each column comes from while keeping the query
concise. Here I've omitted the optional as keyword before each of the table
aliases. So it's just toys t and maker is m. The result of a join query like this can
contain columns from both of the tables and the rows are matched according to
the join condition. In this example, the first column comes from the toys table and
the second column comes from the makers table and each toy is in the same row
as its maker. However, as you might have noticed the maker Mattel is in the
makers table but does not appear in the result of this join.

The reason for this as you might have inferred is that none of the toys in the toys
table are made by Mattel. Mattel is represented by maker id 107 and none of the
toys have maker id 107. This is how joins work by default in SQL. For a row to be
returned in the join result, it must match a row in the other table, rows without a
match are not returned. This default type of join has a name, it's called an inner
join. To understand why this is called an inner join, it helps to visualize the values
in the columns we're joining on. In this Venn diagram the circle on the left side
represents the unique values in the maker id column in the toys table, and the
circle on the right side represents the unique values of the id column in the
makers table, these are the columns we're joining on.

Two of the values 105 and 106 are in both circles those values exist in both tables.
However one of these values 107 is only in the right circle, that value exists only in
the makers table. In an inner join, the result set only includes the rows that have
values in the inner region of this diagram, the region where the two circles
overlap, rows that have values in either of the outer regions are excluded from
the results of an inner join. So, when you use the keyword join between the two
table names like in this example, what the SQL engine performs is an inner join.
But you can also explicitly specify that you want an inner join by using the
keyword inner before join.

This has exactly the same result. It does not matter if you include the inner
keyword or leave it off. I usually prefer to include it. I think it's better to be
explicit. With an inner join the order of the tables in the from clause does not
matter. You could have toys on the left and makers on the right or you could have
makers on the left and toys on the right, the result will be the same. The only case
in which the order of the tables in the from clause does matter is if you use select
star then the order of the columns in the results set will depend on which table
comes first in the from clause. In this example where we joined the toys and
makers tables an inner join is appropriate.

The purpose of this join query is to show more information about the maker of
each toy. For each toy in the toys table there is a corresponding maker in the
makers table and since there are no toys made by Mattel it seems appropriate
that Mattel is excluded from the results. In this and many other situations an
inner join gives you exactly the result you're looking for. But in some other
situations, the way that an inner join excludes the non-matching rows can be

problematic. Here's an example. This query is slightly more complex. It joins the
same two tables makers and toys, but this time it groups by maker and it uses the
count function to return the number of toys made by each maker.

The trouble is the result set totally excludes Mattel. What I would like in this case
is for the result set to include Mattel with a count of zero, but since this is an
inner join and there's no row in the toys table with maker id 107, Mattel is simply
excluded. Depending on how this result set was used the absence of Mattel could
be misleading, it could cause an oversight or a misinterpretation. This is just one
example of a case where inner joins do not return the result you're looking for. In
the next video, you'll learn how to solve this problem by using outer joins.

OUTER JOINS

In this video, I'll describe a different class of joins called outer joins. To
demonstrate outer joins, I'll use the employee table and the offices table both in
the default database. These tables represent five different employees and four
different offices. The relationship between these two tables represents which
employees work at which offices. The columns with the corresponding values that
can be matched to join the tables together are named office_id in both of the
tables. So in this example, I'll refer to office_id as the join column. There are two
important things to notice in these tables. First, there is one employee, Val, who
has an office id that does not exist in the offices table. Val has office_id e, but
there is no office with office_id e.

Second, there is one office, the Singapore office that has no employees. The
Singapore office has office_id d, but none of the employees have office_id e.
Aside from these two rows, all the other rows in both of these tables have office
ID values that do exist in the other table. It helps to use a Venn diagram to
visualize this. You can see that the office_ids a, b, and c are in the inner region.
They exist in both tables. But office_id e, that's Val's office_id is found only in the
employees table, the one on the left. Office_id d for the Singapore office, that's
found only in the offices table, the one on the right.

Before I talk about outer joins, first recall what an inner join does. It returns only
the rows with join column values in the inner region. In this example office_ids a,
b, and c are in this inner region, those values exist in both tables. So when the SQL

engine combines these two tables, it identifies ther corresponding rows by
matching their office id values, and it merges the rows according to these
matches. If it's an inner join, it returns only the rows that have matches. The rows
that don't have matches, that's Val with office_id e and the Singapore office with
office_id d, those are not returned by an inner join.

Outer joins handle non-matching rows differently. There are three types of outer
joins, and each one handles non-matching rows in a particular way. In a left outer
join, if there are rows in the left table with a join column value that does not exist
in the right table, it returns them anyway. So in this example, a left outer join will
include the employee Val in the result. Even though, Val's office_id e does not
match any of the office_ids in the offices table. In a right outer join, if there are
rows in the right table with a join column value that does not exist in the left
table, it returns them anyway.

So a right outer join will include the Singapore office in the result, even though it's
office_id d does not match any of the office_ids in the employees table. Finally, in
a full outer join, if there are rows in either of the tables with joint column values
that don't exist in the other table, it returns them anyway. Now let's look at the
SQL syntax for these three types of outer joins and see what exactly they return.
The syntax is the same as for an inner join, except that you replace inner with a
left outer, right outer, or full outer. Here's a left outer join query, combining these
two tables, employees and offices. Notice in the form clause that employees is
the table on the left side of the keywords left outer join, and offices is the table
on the right. Notice that the results that includes Val, even though there's no
match between Val and any of the offices. In a left outer join, non-matching rows
from the left table are returned.

In the result row representing Val, notice how the city value is null. The city
column comes from the offices table but since there's no office for Val, all the
values that would have come from the offices table are null in this row. The office
id for Val also shows up as null in the result. That's because I used o.office_id in
the select list. If I change this to e.office_id, then that value will come from the
employees table so it's not null. In outer joins, you should always consider which
table the join key columns in the results set are coming from. Forgetting about
this can cause confusion. Next is the right outer join. The syntax is the same,

except it's right instead of left. Notice this time that the Singapore office is
included in the result set even though none of the employees work there.

In a right outer join, non-matching rows from the right table are returned. In the
result row representing Singapore, the columns that come from the employees
table like employee id and first name are null since there's no employee that
matches this office. Office id is also null because I used e.office_id in the select
list. If I change this to o.office_id, then it's not null. It shows the value from the
offices table. In left and right outer joins, the order of the table references in the
from clause does matter. Because the one and only difference between these two
types of outer joins is, which table has its non-matching rows included in the
result? Is that the one on the left side or the one on the right side?

That's the only difference. In fact, right outer joins are very rarely used. Most
people prefer to always use a left outer joins and just list the table with the non-
matching rows that you want to return on the left side in the from clause. The
third and final type of outer join is the full outer join. Again, the syntax is the
same except you use the keyword full. Notice how the rows representing the
employee Val and the office in Singapore are included in the results set. In a full
outer join, non-matching rows from both tables are returned. By far, the most
common type of outer join you'll see in the real-world is the left outer join. When
you're joining two tables together, typically one of them is the main table.

The one that represents the items or the units that you're analyzing. Often, you'll
want all the rows from that main table to be included in the result irrespective of
whether they have matches in the other table. The most common thing to do in
that case is specify the main table on the left side of the join and use a left outer
join. For example, here's a join query that answers the question how many
employees work in each city? The main table in this join is the offices table
because the unit of analysis in this question is city, and the city values are found
in the offices table. So the offices table is on the left side of the join.

If you used an inner join here, the row representing Singapore would be excluded
from the result. Using a left outer join includes it, and the aggregate expression
account e.employee_id returns zero in the row for Singapore. Depending on how
our results set like this was used, it could be really important to include the non-
matching row. Even though it's counted zero. Excluding it could cause an

oversight or a misinterpretation. Another common use of outer joins is to identify
and return only the non-matching or unmatched rows.

You can do this by adding a where clause to filter the joined results at to include
only the rows that have a null value indicating that there was no match.
Depending on how you write the Boolean expression in the where clause, you can
return the unmatched rows from the left table or from the right table or from
both tables. This is useful for identifying inconsistencies or anomalies in related
tables. Like in the examples I showed here, maybe Val actually works in the
Singapore office. So Val's office_id is really supposed to be d not e. Identifying
that inconsistency could enable you to get it fixed. Some SQL engines do not
support all three types of outer joins. Mysql supports left and right but not full.
Some others only support left. Hive, Impala, and Postgres QL do support all three.
Also, many SQL engines allow you to leave off the outer keywords. So you can just
write left join, or right join, or full join. I prefer to include the outer keyword just
to be fully explicit about what kind of join it is.

ALTERNATIVE JOIN SYNTAX

This reading describes alternative ways of expressing joins in SQL. We do not
recommend using the techniques described in this reading, but you should
familiarize yourself with them so you can read and understand SQL queries that
use them.
SQL-92-Style Joins and SQL-89-Style Joins
In the video lectures describing joins in SQL, the following join syntax is used:

SELECT ...
 FROM toys JOIN makers
 ON toys.maker_id = makers.id;

Notice the JOIN keyword between the table names, and the ON keyword
followed by the join condition. This is called a SQL-92-style join, or explicit join
syntax, and it is usually considered to be the best syntax to use for joins in SQL.
However, many SQL engines also support another join syntax, called the SQL-89-
style join, or implicit join syntax. In this syntax, you use a comma-separated list

of table names in the FROM clause, and you specify the join condition in
the WHERE clause:

SELECT ...
 FROM toys, makers
 WHERE toys.maker_id = makers.id;

With most SQL engines, this join query returns exactly the same result as the
previous one.
With both join styles, you can use table aliases (t and m in this example):

SELECT ...
 FROM toys AS t JOIN makers AS m
 ON t.maker_id = m.id;
SELECT ...
 FROM toys AS t, makers AS m
 WHERE t.maker_id = m.id;

With both styles, the AS keyword before each table alias is optional.
When you use a SQL-89-style join, the SQL engine always performs an inner join.
With this syntax, there is no way to specify any other type of join. If you want to
use one of the other types of joins (left outer, right outer, full outer), then you
must use a SQL-92-style join. Because of this limitation, and because the SQL-89-
style join syntax makes it harder to understand the intent of the query, we
recommend using SQL-92-style joins.

Unqualified Column References in Join Condition

In the join condition that comes after the ON keyword in a join query, the
references to the corresponding columns are typically qualified with table names
or table aliases. For example, when joining the toys table (alias t) and makers
table (alias m), the join condition is specified as:

ON t.maker_id = m.id
However, in the case where a bare column name unambiguously identifies a
column, most SQL engines allow you to use a bare column name. For example,

since there is no column named maker_id in the makers table, the table alias t is
not required in this join condition. So you could specify the join condition as:
ON maker_id = m.id

But because there are columns named id in both tables, the table alias m is
required in this join condition. If you omit the table alias m, then the SQL engine
will throw an error indicating that the column reference id is ambiguous.
In join conditions, we recommend always qualifying column names with table
names or table aliases, whether or not they are strictly required. Doing this makes
your queries safer and clearer.

In some join queries, the names of the two corresponding columns in the join
condition are identical. For example, in this query, the corresponding columns in
the employees and offices table are both named office_id:

SELECT …
 FROM employees e JOIN offices o
 ON e.office_id = o.office_id;

When the corresponding columns in the join condition have identical names,
some SQL engines allow you to use a shorthand notation to specify the join
condition. Instead of using the ON keyword and specifying the condition as an
equality expression, you use the USING keyword and specify the common join key
column name in parentheses after USING:

SELECT …
 FROM employees e JOIN offices o
 USING (office_id);

Natural Joins

When the corresponding columns in the join condition have identical names,
some SQL engines will allow you to omit the join condition, and will automatically
join the tables on all the pairs of columns that have identical names in the left and
right tables. To make a SQL engine do this, you need to specify the keyword
NATURAL before the other join keywords. For example:

SELECT …
 FROM employees e NATURAL JOIN offices o;

MySQL and PostgreSQL support natural joins, but Hive and Impala do not. In the
SQL engines that support it, you can use the keyword NATURAL with any type of
join; for example: NATURAL LEFT OUTER JOIN or NATURAL INNER JOIN.

Omitting Join Conditions

What happens if you attempt to perform a join without specifying the join
condition, and you do not specify NATURAL before the join keywords?
For example, you might run a query like this:

SELECT *
 FROM toys JOIN makers;

Notice that no join condition is specified. With some SQL engines (including
PostgreSQL), this throws an error. But with other SQL engines (including Impala,
Hive, and MySQL) this performs what’s called a cross join. In a cross join, the SQL
engine iterates through each row in the table on the left side and combines it
with every row in the table on the right side. So the result set includes every
possible combination of the rows in the left table and the rows in the right table.
The number of rows in the result set is the product (multiplication) of the number
of rows in the left table and the number of rows in the right table (in this
example, 3 x 3 = 9):

id name price maker_id id name city

21 Lite-Brite 14.47 105 105 Hasbro Pawtucket, RI

21 Lite-Brite 14.47 105 106 Ohio Art Company Bryan, OH

21 Lite-Brite 14.47 105 107 Mattel Segundo, CA

22 Mr. Potato Head 11.50 105 105 Hasbro Pawtucket, RI

22 Mr. Potato Head 11.50 105 106 Ohio Art Company Bryan, OH

22 Mr. Potato Head 11.50 105 107 Mattel Segundo, CA

23 Etch A Sketch 29.99 106 105 Hasbro Pawtucket, RI

23 Etch A Sketch 29.99 106 106 Ohio Art Company Bryan, OH

23 Etch A Sketch 29.99 106 107 Mattel Segundo, CA

id name price maker_id id name city

In most cases, the result of a cross join is meaningless. The rows of the result
contain values with no correspondence. If you don’t realize that you have
performed a cross join, you might be misled by the results. In addition, when
performed on large tables, a cross join can return a dangerously large number of
rows.

There are some specific cases when cross joins are useful, and in most SQL
dialects, you can explicitly specify CROSS JOIN in your SQL statement to make it
clear that you are performing a cross join. This is discussed in a video in the
upcoming honors lesson.

So unless you intend to perform a cross join, and you understand the risks of this
and how to interpret the output, we recommend specifying the join condition in
every join query.

JOINING THREE OR MORE TABLES

When you’re working as a data analyst, you will often need to use join queries to
combine three or more tables. To do this, you use the same syntax as with two
tables, but with more JOINs added at the end of the FROM clause. Each JOIN
should have its own ON keyword and join condition.
For example, to join the customers, orders, and employees tables, you could use
this query:

SELECT c.name AS customer_name,
 o.total AS order_total,
 e.first_name AS employee_name
 FROM customers c
 JOIN orders o ON c.cust_id = o.cust_id
 JOIN employees e ON o.empl_id = e.empl_id;

Notice how the final two lines of this query have the same structure: the JOIN
keyword, a table reference, a table alias, the ON keyword, and a join condition.
You can add arbitrarily many lines like this to the FROM clause, to join together
arbitrarily many tables.

The result the above query is:

customer_name order_total employee_name

Arfa 28.54 Sabahattin

Brendon 48.69 Virginia

Brendon -16.39 Virginia

Chiyo 24.78 Ambrosio

The arrangement of the rows in the result is arbitrary. Each result row represents
an order, and gives the name of the customer who placed the order, the total
amount of the order, and the employee who recorded the order. Because this is
an inner join (the default type), all non-matching rows are excluded from the
result. You can specify other types of joins, in any combination. For example, to
include the order placed by the customer who is not in the customers table,
change the first JOIN to RIGHT OUTER JOIN.

The sequence of the tables in a multi-table join does not matter, except with left
and right outer joins, where it affects which table’s non-matching rows are
included. Each join condition can refer to join key columns in any of the tables
mentioned earlier in the FROM clause.

Join queries are computationally expensive and can be slow, especially when
you’re joining three or more tables, or if you’re working with very large data. One
strategy that can be used to remedy this problem is to join the data in advance
and store the pre-joined result in a separate table, which you can then query. (If
you completed the first course in this specialization, you might recall this is one
way of denormalizing a normalized database, to make it easier to run analytic
queries.) This approach of pre-joining tables has some costs, but it can make
analytic queries easier to write and faster to run. A later course in this
specialization will go into more details about how you can do that.

HANDLING NULL VALUES IN JOIN KEY COLUMNS

When you join together two tables, if there are no values in the join key columns
in both tables, the SQL engine will not match these nulls. It will not combine rows
based on a null value in one table matching a null value in the other table. Here's
an example to demonstrate this. These two tables are the same as the customers
and orders tables on the VM, except here each one has an additional row added
containing a null value in the cust_id column. So there's one customer record with
a cost_id value of null, and there's one order record with a cost_id value of null.
When you run a query to join these tables, the records with these null values in
the join key column are not merged together in the result set. To understand why
this is, look at the join condition, c.cust_id = o.cust_id.

That's the equality comparison that the SQL engine uses to identify matches when
it performs the join. Recall that whenever one or both sides of an equality
comparison are null, the comparison yields null. So when the SQL engine
compares the null cost_id value in the one table to the null cost_id value in the
other table, these two nulls do not yield a match. Null equals null is not true, it's
null. So the SQL engine does not merge together these two rows with the null join
key values. And since this is an inner join, neither of these unmatched rows is
included in the result set. Typically this is exactly the behavior you would want
and expect in a join. In an example like this, nulls in the joint key columns would
probably mean unknown. And you would not want to merge together two records
on the basis of them both having an unknown value in the join key column.

However, in some cases, you might want to match null values when doing a join.
For example, suppose that the company that this data comes from allows
customers to place an order anonymously. For example, to complete a
transaction as a guest instead of creating an account or signing in. And suppose
that the row in the customers table that has a null in the cust_id column
represents all anonymous customers. And that orders by anonymous customers
are stored in the orders table with a null in the cust_id column. Using null that
way is a questionable choice, but suppose that someone else designed the
database that way, and you're just trying to analyze the data. So in this case,
perhaps you would want the join query to merge together these records with null
in the join key column. You would want it to treat null as equal to null. To do this,
you can change the join condition to use this special operator instead of the

equality operator. You might recall this operator from earlier in the course. It's
written as less than sign, equals sign, greater than sign, and it's shorthand for is
not distinct from.

This operator is sometimes called the null safe equality operator. And this type of
join is called a null safe join. When this operator compares two null values, it
returns true instead of null. So with this join condition, the SQL engine merges
together the two records that have null values in the join key column, and in
includes the merged row in the join result. This type of join works with many SQL
engines, including Hive, Impala, and MySQL. With PostgreSQL, you need to use
the long form of this operator, is not distinct from, instead of the shorthand form.

NON-EQUIJOINS

In a typical join, the join conditions are expressed as one or more equality
conditions. This is called an Equijoin. A Non-Equijoin is a join that uses some
other comparison instead of equality. In a Non-Equijoin, you can use
comparisons such as not equal, less than, or greater than in the join conditions.
Here's an example: The employees table lists the salary for each employee, and
the salary grades table lists the salary grades or levels and their associated
minimum and maximum salaries. To find the salary grade for each employee,
you could use a Non-Equijoin with inequality comparisons for the join conditions.
For instance, in the results you can see Ambrosia Rojas has salary grade two,
because his salary which is 25,784 is greater than or equal to the minimum salary
for grade two which is 20,000 and less than or equal to the maximum salary for
grade two which is 29,999. Impala, MySQL, PostgreSQL, and some other SQL
engines support Non-Equijoin queries like this one. But with HIVE, only equality
conditions are allowed in joins.

CROSS JOINS

Unlike other types of joins, a Cross Join does not try to match records based on
the values and corresponding columns. Instead what a Cross Join does, is it
returns every possible combination of the records from the tables. In other words
a cross join generates the cross-product, also known as the Cartesian product of

the datasets. For this reason, it's also known as a Cartesian Join. Be careful when
doing Cross Joins, because they can generate huge amounts of data.

The number of rows a cross join generates, is equal to the product, the
multiplication of the number of rows in each table. In many cases the result of a
cross join is meaningless. The rows of the result set contain values that have no
correspondence. However, in some cases generating every possible combination
of values can be useful, as in this example. There's a table named card_rank with
13 rows, one row for each rank of a playing card in a standard deck of card, two
through 10, and Jack, Queen, King and Ace. There's a table named card_suit, with
four rows, four Clubs, Diamonds, Hearts and Spades. If you do a cross join on
these two tables, you get a result set with 13 times four rows, that's 52 rows, and
each row represents one card in a standard 52 card deck.

The best way to write a SQL statement that performs a cross join, is to explicitly
specify cross join in your statement, like I did in this example. But many SQL
engines will also perform a cross join if you simply omit the join condition. In
other words, if you use only the join keyword, and no other keywords between
the two table names, and you leave off the join condition, so there's no on
keyword, then most SQL engines will perform a cross join. This feature is
dangerous because it means that by simply forgetting to include the join
condition in an inner join query, you can inadvertently caused the SQL engine to
return an enormous number of rows. So remember to specify the join condition
whenever you do not want to do a cross join. All of this also applies when you use
the SQL 89 style Inner Join syntax, where you use a comma instead of the join
keyword, and you put the join condition in the WHERE clause.

If you use that syntax, but you forget to include the join condition in the WHERE
clause, then the SQL engine will perform a cross join. It can be helpful to
understand an Inner Join as a cross join, followed by a filter. I'll use an example to
show what I mean by this. I'll use the SQL 89 style Inner Join syntax in this
example, because it demonstrates the point more clearly. This statement
performs a cross join. It's written like an Inner Join, but with no join condition. So
it returns every possible combination of toys and makers. There are three toys
and three makers, so it returns three times three rows, nine rows. Most of these
rows contain values that do not correspond to one another. In most of the rows,
the maker id value from the toys table is not equal to the id value from the

makers table. But if you add a WHERE clause to filter this Cross Join result, so it
only contains the rows in which the join key column values are equal, then what
you have is an Inner Join.

All the join key values in the results set match, and all the values in each row
correspond. This is exactly the same result you get if you use the SQL 92 style
Inner Join syntax. So an Inner Join is effectively the same as a Cross Join, followed
by a filter. This equivalence is especially evident when you use the SQL 89 style
syntax, where an Inner Join is literally written as a Cross Join followed by a filter.
What a SQL engine does internally when it performs an Inner Join, is much more
efficient than what would happen if it actually generated all possible
combinations, and then filtered them. But the end result is equivalent.

LEFT SEMI-JOINS

Some SQL engines support a less common type of join called the Left Semi-Join. A
Left Semi-Join is a special type of Inner Join that's used for its efficiency. It
behaves more like a filter than a join because only the data from one of the tables
is included in the result set. A Left Semi-Join returns only records from the table
on the left for which there is a match in the table on the right. Here's an example.
Say you want to use the data in the fly database on the VM to find out which
aircraft models are used for very long flights.

For instance, flights with a distance of more than 4,000 nautical miles. There's a
table named Planes that has information about the different aircraft, including
the manufacturer and the model. But there's no information about the range, the
maximum flying distance of the aircraft in that table. However, there is a distance
column in the flights table that gives the distance of every flight in miles. These
two tables, aircraft and flights can be joined using tail number as the join key
column. So it's possible to answer this question by joining these two tables. But a
regular Inner Join does more than you need in this case. You do not need to
return any values from the flights table. You just need to use the values from the
flights table to filter the matching rows in the planes table.

This is the kind of situation where it's possible and it's more efficient to use a Left
Semi-Join. Here's the syntax of a Left Semi-Join. You preface the join keyword

with left semi and then after the ON keyword, you specify both the join
conditions and you can specify other criteria for filtering the table on the right
side of the join. This is different from what's included after the ON keyword in
other joins. In the other kinds of joins, only the join criteria are included there.

But in a Left Semi-Join, you can include filtering criteria there as well. The
expression after the on keyword is the only place where you're allowed to refer to
the columns from the table on the right. So in this example, if you attempted to
use this filter condition in the where clause, the SQL engine would throw an error.
Or if you attempted to include references to any of the columns from the flights
table in the select list or in other clauses, the SQL engine would throw an error.
The only place they're allowed is in an expression after the ON keyword. In cases
where this limitation is acceptable, a Left Semi-Join can give you much better
performance than an Inner Join.

The result of this query shows that the aircraft used for these long flights were all
large Boeing and Airbus jets as you might expect, but there is one strange row in
the results set listing, a Bombardier Jet which I don't think has a range this long.
Maybe that plane made a refueling stop on those flights, I don't know. If you want
it to return more details about those flights like the carrier, origin, and
destination, then you would need to use an Inner Join instead. You cannot return
those columns in a Left Semi-Join because they're from the table on the right side.
Hive and Impala allow left semi joins, but many other SQL engines do not. Some
SQL engines also allow Right Semi-Joins, which allows you to reverse the order of
the table, so they return records from the table on the right that have matches in
the table on the left. Some SQL engines are smart enough to process regular Inner
Joins as efficient right or left semi joins when it's possible to do so.

SPECIFYING TWO OR MORE JOIN CONDITIONS

In all the examples of joins presented in this course, it was possible to join two
tables together by specifying a single join condition after the ON keyword. For
example, to join the toys and makers tables together, the join condition was:

toys.maker_id = makers.id

However, in the real world, to join some pairs of tables together, you will need to
specify two or more join conditions after the ON keyword. For example, imagine
you have a table containing historical daily weather conditions data for all United
States airports, and this table includes columns named year, month, day,
and airport. To join this weather table (alias w) with the flights table (alias f), you
would need to specify an expression with four join conditions, like this:

ON f.year = w.year
 AND f.month = w.month
 AND f.day = w.day
 AND f.origin = w.airport

In this example, the four conditions are combined into a single expression using
the AND operator, so the SQL engine checks for all four criteria to be true when it
matches the rows from the flights table and the weather table.
Join conditions like this are called multiple join conditions orcompound join
conditions. It is common for joins to require conditions like this.

When the pairs of corresponding columns have identical names in the two tables,
some SQL engines allow you to use the USING keyword to specify multiple join
conditions. In the parentheses after the USING keyword, separate the column
names with commas. For example, if you were joining together two tables using
columns named city and state as the join key columns, you could use the
following join syntax:

SELECT …
 FROM table1 JOIN table2
 USING (city, state);

	WEEK 2
	Learning Objectives

	Review and Preparation
	What Is Apache Spark, and What Is Spark SQL?
	Spark SQL Is Compatible with Hive and Impala
	Using the Hue Query Editors
	Running SQL Utility Statements
	Running SQL SELECT Statements
	Understanding Different SQL Interfaces
	(Optional) Using Other SQL Engines
	Learning Objectives

	SQL SELECT Building Blocks
	Introduction to the SELECT List
	Expressions and Operators
	Order of Operations
	Practice
	Data Types
	Column Aliases
	Built-In Functions
	Common String Functions
	Data Type Conversion
	Introduction to the FROM Clause
	Identifiers
	Formatting SELECT Statements
	Case (In)Sensitivity in SQL
	WEEK 3

	Introduction
	Character Sets
	Support in SQL Engines
	Introduction to the WHERE Clause
	Using Expressions in the WHERE Clause
	Comparison Operators
	Data Types and Precision
	Working with Literal Strings
	Logical Operators
	Other Relational Operators
	Understanding Missing Values
	Conditional Functions
	Using Variables with Beeline and Impala Shell
	Calling Beeline and Impala Shell from Scripts
	WEEK 4

	Learning Objectives
	Intro
	Aggregate Operations
	Common Aggregate Functions
	COUNT(*) and SUM(1)
	Using Aggregate Functions in the SELECT Statement
	The least and greatest Functions
	The GROUP BY Clause
	Choosing an Aggregate Function and Grouping Column
	Grouping Expressions
	Grouping and Aggregation, Together and Separately
	NULL Values in Grouping and Aggregation
	Why Aggregate Expressions Ignore NULL Values
	The COUNT Function
	Shortcuts for Grouping
	How Grouping and Aggregation Can Mislead
	Queries Used to Compare Carriers
	The HAVING Clause
	Discussion Prompt: The Analytic Journey
	Working with Different Versions of Hue, Hive, and Impala
	Understanding Hive and Impala Version Differences
	Understanding Hue Version Differences
	WEEK 5
	Learning Objectives

	The ORDER BY Clause
	Introduction to the ORDER BY Clause
	Ordering Expressions
	Ordering by String Columns
	Missing Values in Ordered Results
	Using ORDER BY with Hive and Impala
	The LIMIT Clause
	When to Use the LIMIT Clause
	Using LIMIT with ORDER BY
	Using LIMIT for Pagination
	WEEK 6
	Learning Objectives

	Combining Query Results with the UNION Operator
	Missing or Truncated Values from Type Conversion
	Using ORDER BY and LIMIT with UNION
	Using UNION to Combine Three or More Results
	Introduction to Joins
	Inner Joins
	Outer Joins
	Alternative Join Syntax
	Joining Three or More Tables
	Handling NULL Values in Join Key Columns
	Non-Equijoins
	Cross Joins
	Left Semi-Joins
	Specifying Two or More Join Conditions

