Module 13 In this module we will:

- Avoid BigQuery Performance Pitfalls

Opt|m|z|ng for + Prevent Hotspots in your Data

- Diagnose Performance Issues with the Query
Performance Explanation map

& Google Cloud

Four Key Elements of Work

e 1/0 — How many bytes did you read?

e Shuffle — How many bytes did you
pass to the next stage?
o Grouping — How many bytes do
you pass to each group?

e Materialization — How many bytes
did you write to storage?

e CPU work — User-defined functions
(UDFs), functions

Avoid Input / Output Wastefulness

e Do not SELECT *, use only
the columns you need

e Filter using WHERE as early
as possible in your queries

e Do notuse ORDER BY
without a LIMIT

) Google Cloud

Module 13 In this module we will:

+ Avoid BigQuery Performance Pitfalls

Optlm|Z|ng for . P.revent Hotspots in your Data |
- Diagnose Performance Issues with the Query
Performance Explanation map

& Google Cloud

Shuffle Wisely: Be Aware of Data Skew in your Dataset

e Filter your dataset as early as
possible (this avoids overloading
workers on JOINSs)

e Hint: Use the Query Explanation
map and compare the Max vs the
Avg times to highlight skew
N N N
Skewed Data creates an e BigQuery will automatically
imbalance between attempt to reshuffle workers that

BigQuery worker slots :
(uneven data partition sizes) are overloaded with data

Careful use of GROUP BY

e Best when the number of distinct
groups is small (fewer shuffles of
data).

e Grouping by a high-cardinality
unique ID is a bad idea.

Row contributor_id LogEdits

1

© o N o o » W N

= e S R S S e
N o o A W N = O

2221364
104574
73576
311307
291919
140178
181636
3661553
3600820
4737290
938404
295955
183812
1811786
8918196
561624
5338406

BT S R T R R R N . T R R R R

«— Do not Group on an D

£) Google Cloud

Joins and Unions

e Know your join keys and if they're
unique - no accidental cross joins

e LIMIT Wildcard UNIONS with
_TABLE_SUFFIX filter

e Do not use self-joins (consider
window functions instead)

Limit UDFs to Reduce Computational Load

CREATE TEMP FUNCTION SumFieldsNamedFoo(json_row STRING)
RETURNS FLOAT64
LANGUAGE js AS """

function SumFoo(obj) {

e Use native SQL functions vap sum = @;
whenever possible for (var field in obj) {
P if (obj.hasOwnProperty(field) && obj[field] !'= null) {
if (typeof obj[field] == "object") {
sum += SumFoo(obj[field]);
e Concurrent rate limits: R
- for non-UDF queries: 50 o = objlfieldls
- for UDF-queries: 6)
}
return sum;
}

var row = JSON.parse(json_row);
return SumFoo(row) ;

nunn o,
’

Module 13 In this module we will:

Avoid BigQuery Performance Pitfalls

(] [) [) o . D
Opt|m|z|ng for Prevent Hotspots in your Data |
- Diagnose Performance Issues with the Query
Performance

Explanation map

& Google Cloud

Diagnose Performance Issues with the Query Explanation Map

Results Explanation

> Stage 1
> Stage 2

Results Explanation

v Stage 1
READ

AGGREGATE
WRITE

> Stage 2

Stage timing
Wait Read Compute
I
[|
Stage timing
Wait Read Compute
I ——
corpus

FROM publicdata:samples.shakespeare
WHERE EQUAL(corpus, 'hamlet')

COUNT_STAR() AS £0_

fo
TO _ stagel_output

Write

Write

Rows
Input
164,656

1

Rows
Input
164,656

—

Output

Output

£) Google Cloud

Diagnose Performance Issues with the Query Explanation Map

The following ratios are also available for each stage in the query plan.

APl JSON Name Web UI* Ratio Numerator **

waitRatioAvg Time the average worker spent waiting to be scheduled.
waitRatioMax Time the slowest worker spent waiting to be scheduled.
readRatioAvg Time the average worker spent reading input data.
readRatioMax | MAX | Time the slowest worker spent reading input data.
computeRatioAvg [AVG | Time the average worker spent CPU-bound.
computeRatioMax | MAX | Time the slowest worker spent CPU-bound.
writeRatioAvg AVG Time the average worker spent writing output data.
writeRatioMax | | MAX | Time the slowest worker spent writing output data.

* The labels 'AVG' and 'MAX' are for illustration only and do not appear in the web UL

** All of the ratios share a common denominator that represents the longest time spent by any worker in any
segment.

&) Google Cloud

Example: Large GROUP BY

SELECT Large GROUP BY query

LogEdits, COUNT(contributor_id) AS Contributors
FROM (
SELECT
contributor_id,
CAST(LOG10(COUNT(*)) AS INT64) LogEdits # Buckets user edits
FROM "publicdata.samples.wikipedia®
GROUP BY contributor_id)
GROUP BY LogEdits
ORDER BY LogEdits DESC

Large GROUP BY Means Many Forced Shuffles

READ Contributors, LogEdits FROM stage3 output AS
publicdata:samples.wikipedia

SORT LogEdits DESC

WRITE Contributors, LogEdits to output

READ Contributors, LogEdits from stage2 output AS
publicdata:samples.wikipedia

AGGREGATE SUM_OF_COUNTS(Contributors) AS Contributors
GROUP BY LogEdits

WRITE Contributors, LogEdits to stage3 output

READ contributor_id, f@_ FROM stagel output AS
publicdata:samples.wikipedia

AGGREGATE SUM _OF COUNTS(f@_) AS f@_GROUP BY contributor_id
COMPUTE INTEGER(LOG1@O(f0_))

AGGREGATE COUNT(contributor_id) AS Contributors GROUP BY
LogEdits

WRITE Contributors, LogEdits to stage2_output BY

Network Reads HASH(LogEdits)

" " READ contributor_id FROM publicdata:samples.wikipedia
Distributed storage AGGREGATE COUNT STAR() AS f@_ GROUP BY contributor_id

. WRITE contributor_id, f@_ to stagel output BY
(Google Flle SYStem) HASH(contributor_id)

£) Google Cloud

Table Sharding - Then and Now

L]

((

Traditional databases
get performance boost
by partitioning very large
tables

Usually requires an
administrator to
pre-allocate space,
define partitions, and
maintain them

1
1
LL

s\",
v -

ER}

Manual Table sharding
divides big table into smaller
tables with new suffix of
YYYYMMDD

Queries use Table Wildcard
functions

—

2017

2016
2015 |

Date Partition a single table
based on specified DAY or a
Date Column

Creating Partitioned Tables

&) Google Cloud

https://cloud.google.com/bigquery/docs/creating-partitioned-tables

Monitor Performance with Stackdriver

Monitoring BigQuery with Stackdriver

9:20 9:25 9:30 9:35 9:40 9:45 9:50 9:55 10 PM 10:05 10:10 10:15

Slot Utilization

WL et S

Queries in Flight

Available for all BigQuery customers

Fully interactive GUI. Customers can
create custom dashboards
displaying up to 13 BigQuery
metrics, including:

(@)

(@)

(@)

Slots Utilization

Queries in Flight

Uploaded Bytes (not shown)
Stored Bytes (not shown)

&) Google Cloud

Summary: Query and data model design has a significant impact on

performance

vAvg

(tioMax

. . " ‘atioAvg AVG
‘aMax [

Query only the Investigate the

rows and query explanation

columns you map to see if data

need to reduce skew is

bytes processed bottlenecking your
query

dRatioAvg
-eadRatioMax | ________________MAN
‘omputeRatioAvg | AVG |
]]
o]

auteRatioMax .

Avoid SQL
anti-patterns like
ORDER BY without
aLIMIT or a
GROUP BY on
high-cardinality
fields

—

,s” P
] :‘ « j:ﬁ‘
: ‘ v -

Use table
partitioning to
reduce the
volume of data
scanned

£) Google Cloud

Lab 11
Optimizing and Troubleshooting
Query Performance

17

Google Cloud

Optimizing and Troubleshooting Query Performance

In this lab, you will fix and troubleshoot
SQL queries for performance
improvements.

) Google Cloud

