Module 11 In this module we will:

- Compare Google BigQuery vs Traditional

Schema Design and Relational Data Architecture

Normalization vs Denormalization:
NeSted Data Structures Performance Tradeoffs

Working with Nested Data, Arrays, and Structs
in Google BigQuery

Google Cloud

Let’'s Re-Examine our IRS Schema as an Architect

Form 990 (2016)
Statement of Functional Expenses
Section 501(c)(3) and 501(c)(4) organizations must complete all columns. Al
Check if Schedule O contains a response or note to any lin
Do not include amounts reported on lines 6b, 7b, o (A)
8b, 9b, and 10b of Part VI Sl e
1 Grants and other assistance to domestic organizations
and domestic governments. See Part IV, line 21 .
2 Grants and other assistance to domestic
individuals. See Part IV, line 22 :
3 Grants and other assistance to foreign
organizations, foreign governments, and foreign
individuals. See Part IV, lines 15 and 16 .
Benefits paid to or for members . . . 4
Compensation of current officers, dlrectors a C O t e S e at a I e S
trustees, and key employees . . .
6 Compensation not included above to dlsquale ied

e o s e 3 needs to be stored in a

persons described in section 4958(c)(3)(B)
Other salaries and wages . .
8 Pension plan accruals and contnbutlons (mclude t 't d
section 401(k) and 403(b) employer contributions) S ru C u re W ay
9 Other employee benefits .
10 Payroll taxes .
11 Fees for services (non- employees)
Management
Legal
Accounting
Lobbying .
Professional fundraising services. See Paﬁ IV I|ne 17
Investment management fees . .
Other. (If line 11g amount exceeds 10% of line 25 column
(A) amount, list line 11g expenses on Schedule 0.) .
12 Advertising and promotion
13 Office expenses
14 Information technology
15 Royalties .
16 Occupancy
Travel .

(S

~

@-w-0000co0

Google Cloud

Option 1: Add each Expense field as a New Column

Table Details: irs_990_2015

Schema Details Preview

yeebenef payrolltx feesforsrvemgmt

0 0 0
816623 847695 0
524396 539651 127071
177305 209707 0

1289799 543608 7415
512540 170264 0
217097 115324 0

legalfees accntingfees feesforsrvclobby profndraising feesforsrvcinvstmgmt

0

0
34165
120
14888
24000
0

0
28654
44264
22000
33514
64500

0

0

0
0
0
0
0
0

0

0
0
0
0
0
0

0

o O O o o o

feesforsrvcothr
0
27770

11551
0
96660
0

>

advrtpromo
0

0

567392

0

1273856
344208

0

officexpns
0

155715
732920
165306
2101383
2128823

0

infotech royaltsexpns occupancy

0
43796
875416
11391
217216
0

0

0

0
0
0
0
0
0

0
1156758
887599
231092
604569
540746
0

travel
0
0
33446

40173

0

Google Cloud

Option 1: Add each Expense field as a New Column

Table Details: irs_990_2015

Schema Details Preview

yeebenef payrolltx feesforsrvemgmt

0 0 0
816623 847695 0
524396 539651 127071
177305 209707 0

1289799 543608 7415
512540 170264 0
217097 115324 0

legalfees accntingfees feesforsrvclobby profndraising feesforsrvcinvstmgmt

0

0
34165
120
14888
24000
0

0
28654
44264
22000
33514
64500

0

0

0
0
0
0
0
0

0

0
0
0
0
0
0

0

0
0
0
0
0
0

feesforsrvcothr
0
27770

11551
0
96660
0

>

advrtpromo
0

0

567392

0

1273856
344208

0

officexpns
0

155715
732920
165306
2101383
2128823

0

infotech royaltsexpns occupancy

0
43796
875416
11391
217216
0

0

.. results in a really WIDE table that is not scalable...

0

0
0
0
0
0
0

0
1156758
887599
231092
604569
540746
0

travel
0
0
33446

40173

0

Google Cloud

Option 2: Break Out Expenses into another Lookup Table

Organization Details

Company ID

Company Name

161218560

NY Association Inc.

Historical Transactions

Company ID

Expense Code

Amount

161218560

1

$10,000

—

Code Lookup Tables
Expense Code Expense Type
1 Lobbying
2 Legal
3 Insurance
Google Cloud

Option 2: Break Out Expenses into another Lookup Table

Organization Details

Company ID

Company Name

161218560

NY Association Inc.

Historical Transactions

Code Lookup Tables
Expense Code Expense Type
1 Lobbying
2 Legal
3 Insurance

Company ID

Expense Code

Amount

161218560

1

$10,000

... this breaking apart process is called Normalization ...

—

Google Cloud

Module 11 In this module we will:

Compare Google BigQuery vs Traditional
Relational Data Architecture

Schema Design and
Nested Data Structures

« Normalization vs Denormalization:
Performance Tradeoffs
Working with Nested Data, Arrays, and Structs
in Google BigQuery

Google Cloud

Normalization Benefit: Scalable Individual Tables

Organization Details

Historical Transactions

Company Expense | Amount
ID Code
161218560 1 $10,000

Company A Company Name

ID

161218560 | NY Association
Inc.

Code Lookup Tables

Expense
Code

Expense
Type

1

Lobbying

2

Legal

3

Insurance

... schema changes no longer needed as data grows ...

—

Google Cloud

Normalization Drawback: JOINs are now a Necessity

Organization Details

Historical Transactions

Company A Company Name
ID
161218560 | NY Association

Inc.

Company Expense | Amount
ID Code
161218560 1 $10,000

Code Lookup Tables

Expense
Code

Expense
Type

1

l:0bbying

2

Legal

3

Insurance

SELECT Company Name, Amount, Expense Type

NY Association Inc.

$10,000

Lobbying

Google Cloud

Did we go too far? Denormalization Improves Performance

Organization Details

Historical Transactions

Company A Company Name
ID

\
161218560

NY Association
Inc.

\

Company Expense | Amount
ID Code /
161218560 | Lobbying %0,000

Code Lookup Tables
Expense IExpense
Code Type
1 £ obbying
2 wegal
3 Insurance

SELECT Company Name, Amount, Expense Type

NY Association Inc.

$10,000

Lobbying

Google Cloud

Relational Databases at Scale?

How do traditional
relational databases
handle record growth
at scale?

Google Cloud

Traditionally, Very Large Tables are Hard to Scan and Compute

Organization Details

Company A Company Name
ID
161218560 | NY Association

Inc.

10 Billion Row Table

SELECT Company Name ORDER BY Company Name

—

Google Cloud

Traditional: Pre-Sorted Indexes Introduced to Help Common Queries

Organization Details

Index
Company Ranked
Name Order
ACME Inc. 1

NY Association
Inc.

900,000

Company A Company Name
ID
161218560 | NY Association
Inc.
10 Billion Row Table

ndexes do not exist in
Biguery because data is
s’g?eud ?no\ handied n &
Qundamen’rall\:) difterent way
as You wil see nextw.

SELECT Company Name ORDER BY Company Name

—

Google Cloud

BigQuery Architecture Introduces Three Key Innovations

1. Column-Based Data Storage
2. Break Apart Tables into Pieces

3. Store Nested Fields within a Table

BigQuery Architecture Introduces Three Key Innovations

1. Column-Based Data Storage

Google Cloud

BigQuery Column-Oriented Storage is Built for Speed

O e Storing related values (faster to
loop through at execution time)

N

- 09 | e Columns can be individually

o o o compressed
N e = -
LN " " . e Access values from a few

columns without reading ever

Record Oriented Storage Column Oriented Storage one g y

BigQuery Architecture Introduces Three Key Innovations

2. Break Apart Tables into Pieces

Google Cloud

BigQuery Automatically Breaks Apart Data into Smaller Shards

Organization Details

Company
ID

Company Name

161218560

NY Association
Inc.

Google File System

DEBOdpoEnn

10 Billion Row Table

BigQuery Automatically Pieces it All Back Together for Queries

Organization Details

SELECT Company Name ORDER BY Company Name

Company
ID

Company Name

[Gateway J

161218560

NY Association
Inc.

10 Billion Row Table

Shards of data are read and Processed in Parallel

BigQuery Automatically Balances and Scales Workers

e Upto 2,000 workers to
process concurrent queries
(on-demand tier)

e “Fairness model” for
allocation

Google Cloud

BigQuery Workers Communicate by Shuffling Data In-Memory

1 2 1. Workers Consume data values
In-memory 3 and perform operations in

values parallel
Local RAM

2. Workers Produce output to the
In-Memory Shuffle Service

Shuffle (n - 1) ‘

Distributed
Disk

Local Disk

sufie(n+1) 3. Workers Consume New Data
and continue processing

— Workers (one or more slots)
scale to meet the demand of
the processing task.

Local Disk

Read More

Google Cloud

https://cloud.google.com/blog/big-data/2016/01/anatomy-of-a-bigquery-query

BigQuery Shuffling Enables Massive Scale

2

in-memmory 3 e Shuffle allows BigQuery to

values

process massively parallel
petabyte-scale data jobs

e Everything after Query
; Shute (05 1) Execution is Automatically
Distributed Scaled and Managed

Disk
Local Disk

Shuffle (n- 1)

e All Queries Large and Small
Use Shuffle

Google Cloud

BigQuery Architecture Introduces Three Key Innovations

3. Store Nested Fields within a Table

Module 11 In this module we will:

Compare Google BigQuery vs Traditional
Relational Data Architecture

Schema Design and
Nested Data Structures

Normalization vs Denormalization:
Performance Tradeoffs

« Working with Nested Data, Arrays, and Structs
in Google BigQuery

Google Cloud

BigQuery Architecture Introduces Repeated Fields

Normalized Denormalized Repeated

people cities lived people cities lived people cities lived

name name name

age city - age

gender years lived age gender

- gender cities lived (repeated)
city name Bl
years lived yeats Jed
S —
Less Performant High Performing

The Traditional Relational Model Requires Expensive Joins

Organization Details Historical Transactions Code Lookup Tables
Company | Company Name Company Expense Amount Expense | Expense
ID ID Code Code Type
161218560 | NY Association 161218560 | 1 $10,000 1 Lobbying

inc. 2 Legal
3 Insurance

BigQuery Can Use Nested Schemas For Highly Scalable Queries

Organization Details with Nested Historical Transactions

Company ID Company Name Transactions.Amount | Code.Expense
161218560 NY Association Inc. $10.000 Lobbying
NESTED
$5,000 Legal
$1,000 Insurance
123435560 ACME Co. $7,000 Travel

—

Google Cloud

Nested Schemas Bring Performance Benefits

Organization Details with Nested Historical Transactions

Company ID Company Name Transactions.Amount | Code.Expense
161218560 NY Association Inc. $10.000 Lobbying
$5,000 Legal
$1,000 Insurance
123435560 | ACME Co. $7,000 Travel

—

e Avoid costly joins

e No performance
punishment for
SELECT(DISTINCT
Company ID)

Google Cloud

Working with Repeated Fields

1. Introducing Arrays and Structs
2. Flattening Arrays: Legacy vs Standard

3. Practicing SQL with Repeated Fields

Working with Repeated Fields

1. Introducing Arrays and Structs

Google Cloud

Arrays are Supported Natively in BigQuery

Arrays are ordered lists of \
zero or more data values [| et]
that must have the same)

9 y 9

data type

Working with SQL Arrays

%‘BQuer\J Qattened output:
Create an array with brackets]

Row fruit_array

SELECT 1 raspberry

[raspberry’, 'blackberry’, 'strawberry’, ‘cherry'] blackberry

AS fru it_array strawberry
cherry

Reminder: Use #standardSQL

Working with SQL Arrays

Row array_size

1 4

SELECT ARRAY_LENGTH(fruit_array) AS array_size
FROM fruits;

Count the elements in an array
with ARRAY_LENGTH

BigQuery Implicitly Flattens Arrays

B‘ﬁczuenj cutput:
SELECT bl N
[apple’, 'pear’, 'plum’] AS item,

‘Jacob’ AS customer i
Row item customer

Aray = Capple) ‘pear’ ‘purn) 1 apple Jacob
pear

Flattened frray =

apple plum

pear

el

—

Google Cloud

Explicitly Flatten Arrays with UNNEST()

SELECT . . .

) PAssociate all items in our
|tem3; array with the Customer
customer_name

UNNEST (['apple’, 'pear, 'peach]) AS items
CROSS JOIN
(SELECT 'Jacob' AS customer_name)

—

3’5320\9-“:) UWONESTED output:

Row items customer_name
1 apple Jacob
2 pear Jacob

3 peach Jacob

UNNEST = A query that
flattens an array and
returns a row for each
element in the array.

Google Cloud

Aggregate into an Array with ARRAY_AGG

WITH fruits AS

(SELECT "apple" AS fruit Row fruit
UNION ALL 1 apple
SELECT "pear” AS fruit 2 | pear
UNION ALL 3 | banana

SELECT "banana" AS fruit)

SELECT ARRAY_AGG(fruit) AS
fruit_basket
FROM fruits;

Row fruit_basket
1 apple
pear

banana

—

— Subquen:, to create a table
of £ruits £or us to Qﬂgﬁ%gaﬂa
later into an an‘a\:,

use ARRAY_AGG to
qﬂg1¥Fﬂ€.vak&as into an
arra\j

«— These results are the
same as 55@‘“3
Capple’, pear) banana")

Google Cloud

Sort Array Output with ORDER BY

WITH fruits AS
(SELECT "apple" AS fruit
UNION ALL
SELECT "pear” AS fruit
UNION ALL
SELECT "banana" AS fruit)

SELECT ARRAY_AGG(fruit ORDER BY fruit) Row fruit_basket

AS fruit_basket 1 apple
FROM fruits; banana — Motice how
pear banana is now

second

Filter Arrays using WHERE IN

Row items

WITH groceries AS [apple
(SELECT ['apple’, 'pear’, 'banana’] AS list pear < Start with & three arrays
UNION ALL banana | OF Shopping lists
SELECT [carrot, 'apple] AS list S oot
UNION ALL | | -~
SELECT ['water', 'wine'] AS list)
3 water
wine
SELECT
ARRAY(Row contains_apple
SELECT items FROM UNNEST(list) AS items 1 apple Use WHERE W to fiter an
WHERE 'apple’ IN UNNEST(list) pear array, Mote the empty third
) AS con.tains_apple banana array retumed back because
FROM groceries; 2 carot 'apple’ is not present in the
appa original fist

3

STRUCTs are Flexible Containers

STRUCT are a container of
ordered fields each with a
type (required) and field
name (optional).

You can store multiple
data types in a STRUCT
(even Arrays!)

Google Cloud

STRUCTs are Flexible Containers

wait, what's wrong with the

below resurt?
#standardSQL Row f0_.age f0_.name
SELECT
STRUCT(35 AS age, 'Jacob' AS name) 1 50 | “acob

Store aﬁe Qs an in’re&er
Store name as a s’rrinﬂ

STRUCTs are Flexible Containers

#standardSQL vame the overal
SELECT STRUCT container

STRUCT(35 AS age, 'Jacob' AS name) AS customers

Row customers.age customers.name one STRUCT can

1 35 Jacob have Mmany values.
Looks and behaves
similar to a tablke!

STRUCTs Can Even Contain ARRAY Values

#standardSQL STRUCTS can contain
SELECT Arraye as vakes

STRUCT(35 AS age, 'Jacob' AS name,['apple’, 'pear’, 'peach’] AS
items) AS customers

Row customers.age customers.name customers.items
1 35 Jacob apple
pear

peach

ARRAYS can Contain STRUCTSs as Values

#standardSQL ARRAYS can Contain

[SELECT STRUCTS as vaues

STRUCT(35 AS age, 'Jacob' AS name, ['apple’, 'pear’, 'peach’] AS items),
STRUCT(33 AS age, 'Miranda' AS name, ['water', 'pineapple’, 'ice cream’] AS items)
] AS customers

Row customers.age customers.name customers.items
1 35 Jacob apple
pear
peach
33 Miranda water
pineapple

ice cream

Filter for Customers who Bought Ice Cream

#standardSQL

WITH orders AS (

SELECT

[

STRUCT(35 AS age, 'Jacob' AS name, ['apple’, 'pear’, 'peach’] AS items),
STRUCT(33 AS age, 'Miranda' AS name, ['water, 'pineapple’, 'ice cream’] AS items)
] AS customers

Row customers.age customers.name customers.items
CROSS JoW and UMNEST 1 33 Miranda water
SELECT Rattens arraﬁs S0 Wwe can pineapple
customers p—
access elements

FROM orders AS o
CROSS JOIN UNNEST(o.customers) AS customers

WHERE ‘ice cream’ IN UNNEST(customers.items) < Fifer on items fray
with UWWNEST and using W

Nested (Repeated) Records are Arrays of Structs

Nested records in BigQuery are
Arrays of Structs.

Instead of Joining with a sql_on:
expression, the join relationship
is built into the table.

UNNESTing a ARRAY of STRUCTSs
is similar to joining a table.

Google Cloud

Working with Repeated Fields

2. Flattening Arrays: Legacy vs Standard

Google Cloud

Legacy vs Standard SQL Repeated Record Differences

Legacy SQL Syntax Standard SQL Syntax

e Flattening happens explicitly e Flattening happens implicitly

with FLATTEN or explicitly with CROSS JOIN +
UNNEST

Functions:

e WITHIN RECORD Functions:

e NEST e ARRAY_LENGTH

e ARRAY_AGG

More Details

https://cloud.google.com/bigquery/docs/reference/standard-sql/migrating-from-legacy-sql#differences_in_repeated_field_handling

Working with Repeated Fields

3. Practicing SQL with Repeated Fields

ARRAY/STRUCT example

Top two Hacker News articles by day
WITH TitlesAndScores AS (
SELECT
ARRAY_AGG(STRUCT(title, score)) AS titles,
EXTRACT (DATE FROM time_ts) AS date
FROM "bigquery-public-data.hacker_news.stories”
WHERE score IS NOT NULL AND title IS NOT NULL
GROUP BY date)

SELECT date,
ARRAY (SELECT AS STRUCT title, score
FROM UNNEST(titles) ORDER BY score DESC
LIMIT 2)
AS top_articles
FROM TitlesAndScores;

—

WTH Clause:

ru&e,an‘ara3<o€(ﬂﬂe,scoﬁu
ohfxﬁs

Extract the date from the
ﬁnﬁﬁmanp
Gﬂxqabg'ﬁﬁ,dama(hhkhfpee.us
ﬁm,aﬁag<xxﬂewh9

ARRAYCSELECT AS STRUCT:

Unnesfihe,ani¥j£hyn-ﬁm,uﬂTH
clause

order it and take the top 2
Cﬂuﬁe«sreu:anf§’o€CTme,samﬁu
<ﬁﬁaﬂs

cxﬁerque

?nﬂectdaha(hmvsuﬁTH<ﬂause
?ﬂ%&ﬁ'gﬂaﬂ

Google Cloud

ARRAY/STRUCT example result

Row date top_articles.title top_articles.score

1 2010-08-23 Why GNU grep is Fast 512
Readme Driven Development 244

2 2010-04-26 Police raid Gizmodo editor's house 257
Not even in South Park? 257

3 2009-09-15 Learning Advanced JavaScript 257
Sub-pixel re-workings of YouTube 154
and BBC favicons

Summary: BigQuery architecture is designed for petabyte-scale

querying performance

= HEE cese

o o |}
Tables are broken BigQuery uses Structs and arrays
into pieces, called compressed are data type
shards, to allow column-based containers that are
for scalability storage for fast foundational to
retrieval repeated fields

—

date top_articles.title

2010-08-23 Why GNU grep is Fast

Readme Driven Development

2010-04-26 Police raid Gizmodo editor's house

Not even in South Park?

2009-09-15 Learning Advanced JavaScript

Sub-pixel re-workings of YouTube
and BBC favicons

Tables with
repeated fields are
conceptually like
pre-joined tables

Google Cloud

Lab 10
Querying Nested and
Repeated Data

Querying Nested and Repeated Data

Results Explanation Job Information

Row ein name expense_struct.type
1 510203813 IF Lobbying
. . . . Legal
In this lab, you will practice querying —
. . Travel
Nested and Repeated Fields using array preT—
Office
manlpulatlon and structs. 2 364236669 ARF Lobbying
Legal
Insurance
Travel
Ads Promotion

Office

—

_struct. it _struct.type revenue_struct.amount
0 Contributions 110796
0 Programs 0
250 Fundraising 0
0
180
9147
0 Contributions 151818
0 Programs 0
0 Fundraising 817
0
5859
16497

Google Cloud

